Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Mol Genet Genomics ; 299(1): 54, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758218

RESUMEN

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Glycine max , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Potyvirus , Glycine max/genética , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Potyvirus/genética , Genes de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fitomejoramiento/métodos , Haplotipos , Sitios de Carácter Cuantitativo/genética
2.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710505

RESUMEN

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Semillas , Glycine max/metabolismo , Glycine max/genética , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Semillas/genética , Semillas/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Artículo en Inglés | MEDLINE | ID: mdl-38761017

RESUMEN

PURPOSE: To be able to walk safely up or down a staircase, we must be able to judge the configuration and slope of the staircase and our viewing position. Adding markings to the stairs might help form correct perceptions of the staircase geometry. In this study, we examined how visual judgements about staircase configuration are affected by different marking patterns. METHODS: Fifteen normally sighted young participants viewed computer-generated images of staircases as seen from the top landing of the stairs. Marking patterns included contrasting baseboard, transverse edge-stripes, longitudinal side-stripes, longitudinal stripes, diamond patterns, longitudinal stripes extended to landing and diamond patterns extended to landing. For comparison, we included the no-marking condition as a control. We tested several contrast levels of marking patterns (3.2%-50%), pitch lines of the staircases (shallow/medium/steep) and viewing positions (left/centre/right). The effect of the overall shape cue of the staircase on participants' performance was also evaluated. We measured participants' accuracies in judging whether the staircase was shallow, medium or steep, and whether the viewing position was located to the left, centre or right. RESULTS: Transverse edge-stripes markings yielded fewer underestimations of slope (9% [transverse] vs. 18% [others]) when compared with other markers. The presence of an overall shape cue helped both slope (67% [presence] vs. 51% [absence]) and viewing position judgements (79% [presence] vs. 62% [absence]). When the overall shape cue was present, only the transverse edge-stripes markings yielded a significant improvement in performance (compared with no-marking condition). When the cue was absent, performance was significantly better with markings with high and moderate contrasts. CONCLUSIONS: Adding marking patterns such as high-contrast transverse stripes to stairs may help enhance the visibility of the stairs and judgements of staircase geometry. This might be particularly useful for people with visual impairment or normally sighted individuals under compromised environmental conditions.

4.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589730

RESUMEN

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Fotosíntesis/genética , Clorofila/metabolismo
5.
Plants (Basel) ; 13(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611541

RESUMEN

Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.

6.
Plant Cell ; 36(6): 2176-2200, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38345432

RESUMEN

Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente , Estudio de Asociación del Genoma Completo
7.
Plant Physiol ; 194(3): 1527-1544, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37882637

RESUMEN

Phosphorus (P) plays a pivotal role in plant growth and development. Low P stress can greatly hamper plant growth. Here, we identified a QTL (named QPH-9-1), which is associated with P efficiency across multiple environments through linkage analysis and genome-wide association study. Furthermore, we successfully cloned the underlying soybean (Glycine max) gene GmRR1 (a soybean type-B Response Regulator 1) that encodes a type-B response regulator protein. Knockout of GmRR1 resulted in a substantial increase in plant height, biomass, P uptake efficiency, and yield-related traits due to the modification of root structure. In contrast, overexpression of GmRR1 in plants resulted in a decrease in these phenotypes. Further analysis revealed that knockout of GmRR1 substantially increased the levels of auxin and ethylene in roots, thereby promoting root hair formation and growth by promoting the formation of root hair primordium and lengthening the root apical meristem. Yeast two-hybrid, bimolecular fluorescence complementation, and dual-luciferase assays demonstrated an interaction between GmRR1 and Histidine-containing Phosphotransmitter protein 1. Expression analysis suggested that these proteins coparticipated in response to low P stress. Analysis of genomic sequences showed that GmRR1 underwent a selection during soybean domestication. Taken together, this study provides further insights into how plants respond to low P stress by modifying root architecture through phytohormone pathways.


Asunto(s)
Glycine max , Raíces de Plantas , Raíces de Plantas/metabolismo , Glycine max/genética , Fósforo/metabolismo , Estudio de Asociación del Genoma Completo , Meristema/metabolismo
8.
Plant Commun ; 5(2): 100730, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37817409

RESUMEN

Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.


Asunto(s)
Isoflavonas , Humanos , Isoflavonas/genética , Isoflavonas/metabolismo , Glycine max/genética , Retroalimentación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840365

RESUMEN

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Asunto(s)
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Semillas/genética
10.
Front Neurosci ; 17: 1174900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397468

RESUMEN

Binocular summation, a well-known phenomenon in letter acuity measurement, refers to the improvement in visual performance when viewing with both eyes compared to one eye alone. The present study aims to assess the relationship in binocular summation between high and low contrast letter acuities, and examine whether baseline measure (binocular summation at either high or low contrast) is predictive of the change in binocular summation between contrast conditions. Corrected high and low contrast letter acuities were assessed monocularly and binocularly in 358 normal vision observers aged 18-37 years using Bailey-Lovie charts. All observers had high contrast acuities (both monocular and binocular) of 0.1 LogMAR or better and no known eye disease. Binocular summation was calculated as the difference in LogMAR between the better eye acuity and binocular acuity. We found that binocular summation was present at both contrast levels (0.044 ± 0.002 LogMAR for high and 0.069 ± 0.002 LogMAR for low contrast) with higher magnitude of summation at low contrast, and declined with increasing interocular difference. There was a correlation in binocular summation between high and low contrast. The difference in binocular summation between the two contrast levels was found to be correlated with the baseline measurement. Using common commercially available letter acuity charts, we replicated the findings on binocular acuity summation in normally sighted young adults for both high and low contrast letters. Our study revealed a positive relationship in binocular acuity summation between high and low contrast, and an association between a baseline measure and the change in binocular summation between contrast levels. These findings may serve as a reference in clinical practice and research when high and low contrast binocular summations are measured in assessing binocular functional vision.

11.
New Phytol ; 238(4): 1671-1684, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811193

RESUMEN

Soybean (Glycine max) is a major source of protein and edible oil world-wide and is cultivated in a wide range of latitudes. However, it is extremely sensitive to photoperiod, which influences flowering time, maturity, and yield, and severely limits soybean latitude adaptation. In this study, a genome-wide association study (GWAS) identified a novel locus in accessions harboring the E1 allele, called Time of flowering 8 (Tof8), which promotes flowering and enhances adaptation to high latitude in cultivated soybean. Gene functional analyses showed that Tof8 is an ortholog of Arabidopsis FKF1. We identified two FKF1 homologs in the soybean genome. Both FKF1 homologs are genetically dependent on E1 by binding to E1 promoter to activate E1 transcription, thus repressing FLOWERING LOCUS T 2a (FT2a) and FT5a transcription, which modulate flowering and maturity through the E1 pathway. We also demonstrate that the natural allele FKF1bH3 facilitated adaptation of soybean to high-latitude environments and was selected during domestication and improvement, leading to its rapid expansion in cultivated soybean. These findings provide novel insights into the roles of FKF1 in controlling flowering time and maturity in soybean and offer new means to fine-tune adaptation to high latitudes and increase grain yield.


Asunto(s)
Glycine max , Proteínas de Plantas , Aclimatación , Adaptación Fisiológica , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
12.
J Exp Bot ; 74(8): 2692-2706, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36728590

RESUMEN

Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.


Asunto(s)
Glycine max , Potyvirus , Glycine max/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Potyvirus/genética , Enfermedades de las Plantas/genética
13.
Theor Appl Genet ; 136(1): 17, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36670242

RESUMEN

KEY MESSAGE: Five loci related to soybean protein and amino acid contents were colocated by performing linkage mapping and GWAS. The haplotype analysis showed that Glyma.08G109100 may be useful to improve the soybean seed composition. Soybean (Glycine max (L.) Merr.) seeds are good protein sources. Although genetic variation is abundant, natural variation in seed amino acids and their derived traits is lacking across soybean accessions. Here, we determined the contents of protein and 17 amino acids, obtained 36 derived traits based on the protein and total amino acid contents, and derived 34 traits based on seven amino acid family groups. Furthermore, we performed a linkage analysis of the contents of 17 amino acids and 73 amino acid-derived traits based on the recombinant inbred line (RIL)-derived Kefeng No. 1 × Nannong 1138-2. Six hundred thirty-nine quantitative trait loci (QTLs) were identified, explaining 6.07-39.00% of the phenotypic variation. Among these loci, five were detected in diverse soybean accessions using a genome-wide association study. A network analysis revealed that some loci that were significantly associated with multiple amino acids were tightly linked on chromosome 8 based on linkage disequilibrium values, which also further confirmed the results of the correlation analysis among amino acid traits. Through a combination of a genome-wide association study, linkage analysis, qRT-PCR, and genomic polymorphism comparison, Glyma.08G109100 on chromosome 8, which may affect amino acid contents, was selected. The haplotype analysis showed that Hap-T of Glyma.08G109100 may be useful to improve the contents of protein and 16 amino acids in soybean. This study provides new insights into the genetic basis of the amino acid composition in soybean seeds and may facilitate marker-based breeding of soybean with improved nutritional value.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/metabolismo , Aminoácidos/metabolismo , Fitomejoramiento , Fenotipo , Semillas/química , Polimorfismo de Nucleótido Simple
14.
Plant Cell Environ ; 46(2): 592-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36419232

RESUMEN

Phosphorus (P) deficiency seriously affects plant growth and development and ultimately limits the quality and yield of crops. Here, a new P efficiency-related major quantitative trait locus gene, GmEIL4 (encoding an ethylene-insensitive 3-like 1 protein), was cloned at qP2, which was identified by linkage analysis and genome-wide association study across four environments. Overexpressing GmEIL4 significantly improved the P uptake efficiency by increasing the number, length and surface area of lateral roots of hairy roots in transgenic soybeans, while interfering with GmEIL4 resulted in poor root phenotypic characteristics compared with the control plants under low P conditions. Interestingly, we found that GmEIL4 interacted with EIN3-binding F box protein 1 (GmEBF1), which may regulate the root response to low P stress. We conclude that the expression of GmEIL4 was induced by low-P stress and that overexpressing GmEIL4 improved P accumulation by regulating root elongation and architecture. Analysis of allele variation of GmEIL4 in 894 soybean accessions suggested that GmEIL4 is undergoing artificial selection during soybean evolution, which will benefit soybean production. Together, this study further elucidates how plants respond to low P stress by modifying root structure and provides insight into the great potential of GmEIL4 in crop P-efficient breeding.


Asunto(s)
Glycine max , Raíces de Plantas , Estudio de Asociación del Genoma Completo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo
15.
J Integr Plant Biol ; 65(4): 1026-1040, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36349957

RESUMEN

Increasing plant photosynthetic capacity is a promising approach to boost yields, but it is particularly challenging in C3 crops, such as soybean (Glycine max (L.) Merr.). Here, we identified GmFtsH25, encoding a member of the filamentation temperature-sensitive protein H protease family, as a major gene involved in soybean photosynthesis, using linkage mapping and a genome-wide association study. Overexpressing GmFtsH25 resulted in more grana thylakoid stacks in chloroplasts and increased photosynthetic efficiency and starch content, while knocking out GmFtsH25 produced the opposite phenotypes. GmFtsH25 interacted with photosystem I light harvesting complex 2 (GmLHCa2), and this interaction may contribute to the observed enhanced photosynthesis. GmFtsH25 overexpression lines had superior yield traits, such as yield per plant, compared to the wild type and knockout lines. Additionally, we identified an elite haplotype of GmFtsH25, generated by natural mutations, which appears to have been selected during soybean domestication. Our study sheds light on the molecular mechanism by which GmFtsH25 modulates photosynthesis and provides a promising strategy for improving the yields of soybean and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Glycine max/metabolismo , Fotosíntesis/genética , Semillas/genética , Productos Agrícolas/genética
16.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555336

RESUMEN

Soybean is frequently attacked by herbivorous pests throughout the growth period. Exploring anti-insect genes to improve insect resistance in soybean is an important soybean breeding goal. Here, we cloned and characterized the gene for a quantitative trait locus (QTL) related to insect resistance, Glyma.06g189600, which encodes CALCIUM-DEPENDENT PROTEIN KINASE17 (GmCDPK17) in soybean. The pairwise sequence alignment analysis revealed that the presumed protein of GmCDPK17 shares 52.06% similarity with that of GmCDPK38, a known negative regulatory gene of insect resistance in soybean. Ectopic expression of GmCDPK17 and GmCDPK38 restored the phenotypes of the Arabidopsis insect-susceptible mutant cpk10 and insect-resistant mutant cpk28, respectively. Moreover, transgenic hairy roots of the soybean cultivar Jack were generated by Agrobacterium-mediated transformation. Overexpression of GmCDPK17 increased soybean hairy root resistance to common cutworm (CCW), while RNA interference of the gene decreased soybean hairy root resistance to CCW. Sequencing data from the cultivated and wild soybeans were used to analyze the genetic diversity of GmCDPK17. This gene was subjected to domestication selection. Six and seven haplotypes (Haps) were identified in cultivated and wild soybeans, respectively. The resistance Hap1 is not widely used in cultivated soybeans and is mainly distributed at low latitudes. Accessions with resistance haplotypes of the GmCDPK17 and GmCDPK38 genes showed high resistance to CCW. Altogether, we revealed a novel positive regulatory insect resistance gene, GmCDPK17, which may further improve insect resistance in soybean.


Asunto(s)
Arabidopsis , Glycine max , Animales , Glycine max/metabolismo , Proteínas de Soja/metabolismo , Spodoptera/fisiología , Calcio/metabolismo , Fitomejoramiento , Arabidopsis/genética , Calcio de la Dieta/metabolismo
17.
Front Genet ; 13: 953833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419833

RESUMEN

Identifying the genetic components underlying yield-related traits in soybean is crucial for improving its production and productivity. Here, 211 soybean genotypes were evaluated across six environments for four yield-related traits, including seed yield per plant (SYP), number of pods per plant number of seeds per plant and 100-seed weight (HSW). Genome-wide association study (GWAS) and genomic prediction (GP) analyses were performed using 12,617 single nucleotide polymorphism markers from NJAU 355K SoySNP Array. A total of 57 SNPs were significantly associated with four traits across six environments and a combined environment using five Genome-wide association study models. Out of these, six significant SNPs were consistently identified in more than three environments using multiple GWAS models. The genomic regions (±670 kb) flanking these six consistent SNPs were considered stable QTL regions. Gene annotation and in silico expression analysis revealed 15 putative genes underlying the stable QTLs that might regulate soybean yield. Haplotype analysis using six significant SNPs revealed various allelic combinations regulating diverse phenotypes for the studied traits. Furthermore, the GP analysis revealed that accurate breeding values for the studied soybean traits is attainable at an earlier generation. Our study paved the way for increasing soybean yield performance within a short breeding cycle.

18.
19.
Evol Appl ; 15(11): 1820-1833, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36426120

RESUMEN

Global climate change has threatened world crop production and food security. Decoding the adaptive genetic basis of wild relatives provides an invaluable genomic resource for climate-smart crop breedinG. Here, we performed whole-genome sequencing of 185 diverse wild soybean (Glycine soja) accessions collected from three major agro-ecological zones in China to parse the genomic basis of local adaptation in wild soybean. The population genomic diversity pattern exhibited clear agro-ecological zone-based population structure, and multiple environmental factors were observed to contribute to the genetic divergence. Demographic analysis shows that wild soybeans from the three ecological zones diverged about 1 × 105 years ago, and then the effective population sizes have undergone different degrees of expansions. Genome-environment association identified multiple genes involved in the local adaptation, such as flowering time and temperature-related genes. A locus containing two adjacent MADS-box transcription factors on chromosome 19 was identified for multiple environmental factors, and it experienced positive selection that enables the adaptation to high-latitude environment. This study provides insights into the genetic mechanism of ecological adaptation in wild soybean that may facilitate climate-resilient soybean breeding.

20.
Front Neurosci ; 16: 916447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090292

RESUMEN

Reading in the periphery can be improved with perceptual learning. A conventional training paradigm involves repeated practice on a character-based task (e.g., recognizing random letters/words). While the training is effective, the hours of strenuous effort required from the trainees makes it difficult to implement the training in low-vision patients. Here, we developed a training paradigm utilizing stimulus exposure and identity priming to minimize training effort and improve training accessibility while maintaining the active engagement of observers through a stimulus visibility task. Twenty-one normally sighted young adults were randomly assigned to three groups: a control group, a with-repetition training group, and a without-repetition training group. All observers received a pre-test and a post-test scheduled 1 week apart. Each test consisted of measurements of reading speed, visual-span profile, the spatial extent of crowding, and isolated-letter profiles at 10° eccentricity in the lower visual field. Training consists of five daily sessions (a total of 7,150 trials) of viewing trigram stimuli (strings of three letters) with identity priming (prior knowledge of target letter identity). The with-repetition group was given the option to replay each stimulus (averaged 0.4 times). In comparison to the control group, both training groups showed significant improvements in all four performance measures. Stimulus replay did not yield a measurable benefit on learning. Learning transferred to various untrained tasks and conditions, such as the reading task and untrained letter size. Reduction in crowding was the main basis of the training-related improvement in reading. We also found that the learning can be partially retained for a minimum of 3 months and that complete retention is attainable with additional monthly training. Our findings suggest that conventional training task that requires recognizing random letters or words is dispensable for improving peripheral reading. Utilizing stimulus exposure and identity priming accompanied by a stimulus visibility task, our novel training procedure offers effective intervention, simple implementation, capability for remote and self-administration, and an easy translation into low-vision reading rehabilitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA