Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Chem Biol ; 45: 131-138, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29754007

RESUMEN

Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Rastreo Celular/instrumentación , Medios de Contraste/análisis , Técnicas de Diagnóstico Cardiovascular/instrumentación , Magnetismo/instrumentación , Nanopartículas de Magnetita/análisis , Animales , Rastreo Celular/métodos , Diseño de Equipo , Humanos , Magnetismo/métodos
2.
ACS Nano ; 12(4): 3699-3713, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29570277

RESUMEN

Image-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations. The same superparamagnetic iron oxide nanoparticle (SPIONs) tracers imaged in MPI can also be excited to generate heat for magnetic hyperthermia. In this study, we demonstrate a theranostic platform, with quantitative MPI image guidance for treatment planning and use of the MPI gradients for spatial localization of magnetic hyperthermia to arbitrarily selected regions. This addresses a key challenge of conventional magnetic hyperthermia-SPIONs delivered systemically accumulate in off-target organs ( e.g., liver and spleen), and difficulty in localizing hyperthermia results in collateral heat damage to these organs. Using a MPI magnetic hyperthermia workflow, we demonstrate image-guided spatial localization of hyperthermia to the tumor while minimizing collateral damage to the nearby liver (1-2 cm distance). Localization of thermal damage and therapy was validated with luciferase activity and histological assessment. Apart from localizing thermal therapy, the technique presented here can also be extended to localize actuation of drug release and other biomechanical-based therapies. With high contrast and high sensitivity imaging combined with precise control and localization of the actuated therapy, MPI is a powerful platform for magnetic-based theranostics.


Asunto(s)
Antineoplásicos/farmacología , Calefacción , Hipertermia Inducida , Nanopartículas de Magnetita/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Imagen Óptica , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos
3.
ACS Nano ; 11(12): 12067-12076, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29165995

RESUMEN

Gastrointestinal (GI) bleeding causes more than 300 000 hospitalizations per year in the United States. Imaging plays a crucial role in accurately locating the source of the bleed for timely intervention. Magnetic particle imaging (MPI) is an emerging clinically translatable imaging modality that images superparamagnetic iron-oxide (SPIO) tracers with extraordinary contrast and sensitivity. This linearly quantitative modality has zero background tissue signal and zero signal depth attenuation. MPI is also safe: there is zero ionizing radiation exposure to the patient and clinically approved tracers can be used with MPI. In this study, we demonstrate the use of MPI along with long-circulating, PEG-stabilized SPIOs for rapid in vivo detection and quantification of GI bleed. A mouse model genetically predisposed to GI polyp development (ApcMin/+) was used for this study, and heparin was used as an anticoagulant to induce acute GI bleeding. We then injected MPI-tailored, long-circulating SPIOs through the tail vein, and tracked the tracer biodistribution over time using our custom-built high resolution field-free line (FFL) MPI scanner. Dynamic MPI projection images captured tracer accumulation in the lower GI tract with excellent contrast. Quantitative analysis of the MPI images show that the mice experienced GI bleed rates between 1 and 5 µL/min. Although there are currently no human scale MPI systems, and MPI-tailored SPIOs need to undergo further development and evaluation, clinical translation of the technique is achievable. The robust contrast, sensitivity, safety, ability to image anywhere in the body, along with long-circulating SPIOs lends MPI outstanding promise as a clinical diagnostic tool for GI bleeding.


Asunto(s)
Modelos Animales de Enfermedad , Compuestos Férricos/química , Hemorragia Gastrointestinal/diagnóstico por imagen , Nanopartículas de Magnetita/química , Imagen Molecular , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Phys Med Biol ; 62(9): 3510-3522, 2017 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-28218614

RESUMEN

Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.


Asunto(s)
Diagnóstico por Imagen/métodos , Pulmón/diagnóstico por imagen , Nanopartículas de Magnetita , Imagen de Perfusión/métodos , Embolia Pulmonar/diagnóstico por imagen , Animales , Diagnóstico por Imagen/instrumentación , Femenino , Imagen de Perfusión/instrumentación , Ratas , Ratas Endogámicas F344
5.
Nano Lett ; 17(3): 1648-1654, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28206771

RESUMEN

Cancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety. Magnetic particle imaging (MPI) is an emerging tracer imaging modality that detects superparamagnetic iron oxide (SPIO) nanoparticle tracer with high image contrast (zero tissue background signal), high sensitivity (200 nM Fe) with linear quantitation, and zero signal depth attenuation. MPI is also safe in that it uses safe, in some cases even clinically approved, tracers and no ionizing radiation. The superb contrast, sensitivity, safety, and ability to image anywhere in the body lends MPI great promise for cancer imaging. In this study, we show for the first time the use of MPI for in vivo cancer imaging with systemic tracer administration. Here, long circulating MPI-tailored SPIOs were created and administered intravenously in tumor bearing rats. The tumor was highlighted with tumor-to-background ratio of up to 50. The nanoparticle dynamics in the tumor was also well-appreciated, with initial wash-in on the tumor rim, peak uptake at 6 h, and eventual clearance beyond 48 h. Lastly, we demonstrate the quantitative nature of MPI through compartmental fitting in vivo.


Asunto(s)
Medios de Contraste/análisis , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/análisis , Neoplasias/diagnóstico por imagen , Animales , Femenino , Nanopartículas de Magnetita/ultraestructura , Ratones , Ratas
6.
Phys Med Biol ; 62(9): 3440-3453, 2017 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-28177301

RESUMEN

Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI's utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body. Here, we describe the biodistribution and clearance for two commonly used tracers in MPI: Ferucarbotran (Meito Sangyo Co., Japan) and LS-oo8 (LodeSpin Labs, Seattle, WA). We successfully demonstrate that 3D MPI is able to quantitatively assess short-term biodistribution, as well as long-term tracking and clearance of these tracers in vivo.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Imagen Molecular/métodos , Animales , Femenino , Tasa de Depuración Metabólica , Especificidad de Órganos , Ratas , Ratas Endogámicas F344 , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...