Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioessays ; : e2400076, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760875

RESUMEN

The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.

2.
Cell Rep ; 43(3): 113926, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457338

RESUMEN

The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.


Asunto(s)
Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular , Mamíferos/metabolismo
4.
Clin Transl Med ; 14(3): e1630, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38509842

RESUMEN

BACKGROUND AND AIMS: Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS: JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS: Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION: JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS: JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.


Asunto(s)
Moléculas de Adhesión Celular , Regeneración Hepática , Trasplante de Hígado , Animales , Humanos , Ratones , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Regeneración Hepática/genética , Donadores Vivos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Moléculas de Adhesión Celular/metabolismo
6.
Oncogene ; 42(43): 3182-3193, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37684408

RESUMEN

The Carbohydrate Response Element (ChoRE) Binding Protein (ChREBP) and its binding partner Max-like protein X (MLX) mediate transcription of lipogenic genes under glucose-rich conditions. Dysregulation of glucose and lipid metabolism frequently occurs in cancers, including Hepatocellular Carcinomas (HCCs). However, it is currently unclear whether the glucose-induced lipogenic program plays a role in the development of HCCs. Here, we show that MLX expression is elevated in HCC specimens and downregulation of MLX expression inhibits proliferation of HCC cells. In mice, liver-specific knockout of Mlx results in dramatic decrease in the expression of lipogenic genes and lipid levels in circulation. Interestingly, in the absence of Mlx, the development of tumors in multiple HCC models, such as diethylnitrosamine (DEN) treatment and hydrodynamic injection of oncogenes (AKT/RAS or CTNNB1/RAS), is robustly blocked. However, a high-fat diet can partially restore tumorigenesis in Mlx-deficient livers, indicating a critical role of lipid synthesis in HCC development. In addition, liver-specific expression of a dominant negative MLX (dnMLX) via adeno-associated virus effectively blocks tumorigenesis in mice. Thus, the glucose-induced lipogenic program is required in the development of HCC, and the ChREBP: MLX transcription factors serve as a potential target for cancer therapies.

8.
Cell Death Dis ; 14(8): 491, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528078

RESUMEN

WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.


Asunto(s)
Angiomotinas , Aprendizaje , Ratones , Animales , Hipocampo/fisiología , Neuronas , Proteínas de Microfilamentos , Cognición
9.
Sci Adv ; 9(35): eadg7125, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647391

RESUMEN

TERT reactivation occurs frequently in human malignancies, especially advanced cancers. However, in vivo functions of TERT reactivation in cancer progression and the underlying mechanism are not fully understood. In this study, we expressed TERT and/or active BRAF (BRAF V600E) specifically in mouse thyroid epithelium. While BRAF V600E alone induced papillary thyroid cancer (PTC), coexpression of BRAF V600E and TERT resulted in poorly differentiated thyroid carcinoma (PDTC). Spatial transcriptome analysis revealed that tumors from mice coexpressing BRAF V600E and TERT were highly heterogeneous, and cell dedifferentiation was positively correlated with ribosomal biogenesis. Mechanistically, TERT boosted ribosomal RNA (rRNA) expression and protein synthesis by interacting with multiple proteins involved in ribosomal biogenesis. Furthermore, we found that CX-5461, an rRNA transcription inhibitor, effectively blocked proliferation and induced redifferentiation of thyroid cancer. Thus, TERT promotes thyroid cancer progression by inducing cancer cell dedifferentiation, and ribosome inhibition represents a potential strategy to treat TERT-reactivated cancers.


Asunto(s)
Adenocarcinoma , Telomerasa , Neoplasias de la Tiroides , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/genética , Desdiferenciación Celular/genética , ARN Ribosómico , Ribosomas/genética , Telomerasa/genética
10.
EMBO J ; 42(15): e112900, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350545

RESUMEN

The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.


Asunto(s)
Angiomotinas , Pez Cebra , Animales , Ratones , Pez Cebra/metabolismo , Proteínas de Microfilamentos/metabolismo , Péptido Hidrolasas , Péptidos y Proteínas de Señalización Intercelular/genética
11.
EMBO J ; 42(11): e112126, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36919851

RESUMEN

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Vía de Señalización Hippo , Transducción de Señal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas Señalizadoras YAP , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
13.
Cell Rep ; 40(9): 111296, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044856

RESUMEN

The Hippo tumor-suppressor pathway is frequently dysregulated in human cancers and represents a therapeutic target. However, strategies targeting the mammalian Hippo pathway are limited because of the lack of a well-established cell-surface regulator. Here, we show that transmembrane protein KIRREL1, by interacting with both SAV1 and LATS1/2, promotes LATS1/2 activation by MST1/2 (Hippo kinases), and LATS1/2 activation, in turn, inhibits activity of YAP/TAZ oncoproteins. Conversely, YAP/TAZ directly induce the expression of KIRREL1 in a TEAD1-4-dependent manner. Indeed, KIRREL1 expression positively correlates with canonical YAP/TAZ target gene expression in clinical tumor specimens and predicts poor prognosis. Moreover, transgenic expression of KIRREL1 effectively blocks tumorigenesis in a mouse intrahepatic cholangiocarcinoma model, indicating a tumor-suppressor role of KIRREL1. Hence, KIRREL1 constitutes a negative feedback mechanism regulating the Hippo pathway and serves as a cell-surface marker and potential drug target in cancers with YAP/TAZ dependency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinogénesis , Proteínas de Ciclo Celular , Vía de Señalización Hippo , Proteínas de la Membrana , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Retroalimentación , Humanos , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP/metabolismo
14.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455946

RESUMEN

Natriuretic peptide receptor 2 (NPR2) plays a key role in cartilage and bone morphogenesis. The NPR2 gene mutations result in acromesomelic dysplasia, Maroteaux type (AMDM), short stature with nonspecific skeletal abnormalities (SNSK), and epiphyseal chondrodysplasia, Miura type (ECDM). However, the pathogenic mechanism remains unclear. In our study, we identified one de novo (R557C) and six novel variants (G602W, V970F, R767*, R363*, F857S, and Y306S) in five independent Chinese families with familial short stature. Three patients with heterozygous mutations (G602W, V970F, and R767*) were diagnosed with SNSK (height SD score ranged from -2.25 to -5.60), while another two with compound heterozygous mutations (R363* and F857S, R557C and Y306S) were diagnosed with AMDM (height SD score ranged from -3.10 to -5.35). Among three patients with heterozygous status, two patients before puberty initiation with rhGH treatment significantly improved their growth (height velocity 7.2 cm/year, 6.0 cm/year), and one patient in puberty had a poor response to the rhGH treatment (height velocity 2.5 cm/year). Seven NPR2 gene variants were constructed and overexpressed in HEK293T and ATDC5 cells, and we found that ATDC5 cells with mutant NPR2 gene showed decreased differentiation, as evidenced by lower expression of ColII, ColX, and BMP4 and higher expression of Sox9. Moreover, the apoptosis rate was elevated in ATDC5 cells expressing the mutant NPR2 gene. N-glycosylation modification, plasma membrane localization, and ER stress resulted from the accumulation of mutant protein in ER, as shown by the higher expression of GRP78 and p-IRE1α. Overall, our results provide a novel insight into NPR2 loss of function, which could promote chondrocyte apoptosis and repress cell differentiation through ER stress and the unfolded protein response.


Asunto(s)
Estatura , Condrocitos , Enanismo , Osteocondrodisplasias , Receptores del Factor Natriurético Atrial , Estatura/genética , Enanismo/genética , Células HEK293 , Humanos , Mutación , Osteocondrodisplasias/genética , Receptores del Factor Natriurético Atrial/genética
15.
Mol Cell ; 82(10): 1850-1864.e7, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35429439

RESUMEN

YAP and TAZ (YAP/TAZ), two major effectors of the Hippo signaling pathway, are frequently activated in human cancers. The activity of YAP/TAZ is strictly repressed upon phosphorylation by LATS1/2 tumor suppressors. However, it is unclear how LATS1/2 are precisely regulated by upstream factors such as Hippo kinases MST1/2. Here, we show that WWC proteins (WWC1/2/3) directly interact with LATS1/2 and SAV1, and SAV1, in turn, brings in MST1/2 to phosphorylate and activate LATS1/2. Hence, WWC1/2/3 play an organizer role in a signaling module that mediates LATS1/2 activation by MST1/2. Moreover, we have defined a minimum protein interaction interface on WWC1/2/3 that is sufficient to activate LATS1/2 in a robust and specific manner. The corresponding minigene, dubbed as SuperHippo, can effectively suppress tumorigenesis in multiple tumor models. Our study has uncovered a molecular mechanism underlying LATS1/2 regulation and provides a strategy for treating diverse malignancies related to Hippo pathway dysregulation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Carcinogénesis , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo
16.
J Hepatol ; 77(2): 453-466, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292350

RESUMEN

BACKGROUND & AIMS: The liver is a metabolically active organ and is also 'tolerogenic', exhibiting sophisticated mechanisms of immune regulation that prevent pathogen attacks and tumorigenesis. How metabolism impacts the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains understudied. METHODS: We investigated the role of the metabolic regulator SIRT5 in HCC development by conducting metabolomic analysis, gene expression profiling, flow cytometry and immunohistochemistry analyses in oncogene-induced HCC mouse models and human HCC samples. RESULTS: We show that SIRT5 is downregulated in human primary HCC samples and that Sirt5 deficiency in mice synergizes with oncogenes to increase bile acid (BA) production, via hypersuccinylation and increased BA biosynthesis in the peroxisomes of hepatocytes. BAs act as a signaling mediator to stimulate their nuclear receptor and promote M2-like macrophage polarization, creating an immunosuppressive TME that favors tumor-initiating cells (TICs). Accordingly, high serum levels of taurocholic acid correlate with low SIRT5 expression and increased M2-like tumor-associated macrophages (TAMs) in HCC patient samples. Finally, administration of cholestyramine, a BA sequestrant and FDA-approved medication for hyperlipemia, reverses the effect of Sirt5 deficiency in promoting M2-like polarized TAMs and liver tumor growth. CONCLUSIONS: This study uncovers a novel function of SIRT5 in orchestrating BA metabolism to prevent tumor immune evasion and suppress HCC development. Our results also suggest a potential strategy of using clinically proven BA sequestrants for the treatment of patients with HCC, especially those with decreased SIRT5 and abnormally high BAs. LAY SUMMARY: Hepatocellular caricinoma (HCC) development is closely linked to metabolic dysregulation and an altered tumor microenvironment. Herein, we show that loss of the metabolic regulator Sirt5 promotes hepatocarcinogenesis, which is associated with abnormally elevated bile acids and subsequently an immunosuppressive microenvironment that favors HCC development. Targeting this mechanism could be a promising clinical strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuinas , Animales , Ácidos y Sales Biliares , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Sirtuinas/genética , Microambiente Tumoral
17.
Sci Signal ; 14(712): eabj8393, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34874746

RESUMEN

The nuclear translocation and activity of the cotranscriptional activators YAP and TAZ (YAP/TAZ) in endothelial cells (ECs) are crucial during developmental angiogenesis. Here, we studied the role of YAP/TAZ signaling in ECs in tumor angiogenesis and found that the expression of YAP/TAZ and downstream target genes in ECs correlated with tumor vascularization in human colorectal carcinomas and skin melanoma. Treatment with the YAP/TAZ inhibitor verteporfin reduced vessel density and tumor progression in a mouse colorectal cancer (CRC) model. Conditional deletion of YAP/TAZ in ECs reduced tumor angiogenesis and growth in a mouse B16-F10 melanoma model. Using cultured ECs and mice with EC-specific ablation, we showed that signal transducer and activator of transcription 3 (STAT3) was required for the activation of YAP/TAZ in tumor-associated ECs. Moreover, we showed that STAT3-mediated signaling promoted YAP/TAZ activity and that the nuclear shuttling machinery for STAT3 was also required for YAP/TAZ nuclear translocation. Together, our data highlight the role of YAP/TAZ as critical players in ECs during tumor angiogenesis and provide insight into the signaling pathways leading to their activation.


Asunto(s)
Células Endoteliales , Neoplasias , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Endoteliales/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
18.
Cell Rep ; 36(8): 109596, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433060

RESUMEN

Germline alterations of the NF2 gene cause neurofibromatosis type 2, a syndrome manifested with benign tumors, and Nf2 deletion in mice also results in slow tumorigenesis. As a regulator of the Hippo signaling pathway, NF2 induces LATS1/2 kinases and consequently represses YAP/TAZ. YAP/TAZ oncoproteins are also inhibited by motin family proteins (Motins). Here, we show that the Hippo signaling is fine-tuned by Motins in a NF2-dependent manner, in which NF2 recruits E3 ligase RNF146 to facilitate ubiquitination and subsequent degradation of Motins. In the absence of NF2, Motins robustly accumulate to restrict full activation of YAP/TAZ and prevent rapid tumorigenesis. Hence, NF2 deficiency not only activates YAP/TAZ by inhibiting LATS1/2 but also stabilizes Motins to keep YAP/TAZ activity in check. The upregulation of Motins upon NF2 deletion serves as a strategy for avoiding uncontrolled perturbation of the Hippo signaling and may contribute to the benign nature of most NF2-mutated tumors.


Asunto(s)
Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Genes de la Neurofibromatosis 2 , Vía de Señalización Hippo/fisiología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Vía de Señalización Hippo/genética , Humanos , Ratones , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Mol Cancer Ther ; 20(6): 986-998, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33850002

RESUMEN

Mutations in the neurofibromatosis type 2 (NF2) gene that limit or abrogate expression of functional Merlin are common in malignant mesothelioma. Merlin activates the Hippo pathway to suppress nuclear translocation of YAP and TAZ, the major effectors of the pathway that associate with the TEAD transcription factors in the nucleus and promote expression of genes involved in cell proliferation and survival. In this article, we describe the discovery of compounds that selectively inhibit YAP/TAZ-TEAD promoted gene transcription, block TEAD auto-palmitoylation, and disrupt interaction between YAP/TAZ and TEAD. Optimization led to potent analogs with excellent oral bioavailability and pharmacokinetics that selectively inhibit NF2-deficient mesothelioma cell proliferation in vitro and growth of subcutaneous tumor xenografts in vivo These highly potent and selective TEAD inhibitors provide a way to target the Hippo-YAP pathway, which thus far has been undruggable and is dysregulated frequently in malignant mesothelioma and in other YAP-driven cancers and diseases.


Asunto(s)
Mesotelioma Maligno/tratamiento farmacológico , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores , Animales , Proliferación Celular , Humanos , Lipoilación , Mesotelioma Maligno/genética , Ratones , Transducción de Señal
20.
Front Cell Dev Biol ; 8: 586581, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195240

RESUMEN

Mutations in the enzyme isocitrate dehydrogenase 1/2 (IDH1/2) are the most common somatic mutations in low-grade glioma (LGG). The Hippo signaling pathway is known to play a key role in organ size control, and its dysregulation is involved in the development of diverse cancers. Large tumor suppressor 1/2 (LATS1/2) are core Hippo pathway components that phosphorylate and inactivate Yes-associated protein (YAP), a transcriptional co-activator that regulates expression of genes involved in tumorigenesis. A recent report from The Cancer Genome Atlas (TCGA) has highlighted a frequent hypermethylation of LATS2 in IDH-mutant LGG. However, it is unclear if LATS2 hypermethylation is associated with YAP activation and prognosis of LGG patients. Here, we performed a network analysis of the status of the Hippo pathway in IDH-mutant LGG samples and determined its association with cancer prognosis. Combining TCGA data with our biochemical assays, we found hypermethylation of LATS2 promoter in IDH-mutant LGG. LATS2 hypermethylation, however, did not translate into YAP activation but highly correlated with IDH mutation. LATS2 hypermethylation may thus serve as an alternative for IDH mutation in diagnosis and a favorable prognostic factor for LGG patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA