Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cosmet Dermatol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764299

RESUMEN

BACKGROUND: Hair loss is a widespread health problem that affects numerous individuals and is associated with age, lack of sleep, stress, endocrine problems, and other problems. Caffeine exerts various pharmacological effects, particularly after ingestion. The caffeine-induced inhibition of phosphodiesterases can increase intracellular cAMP concentrations, ultimately resulting in stimulatory effects on cell metabolism and proliferation. Hence, caffeine has been confirmed to inhibit hair loss caused by premature termination of the hair growth phase. Adenosine also improves hair loss by stimulating hair growth and thickening hair shafts. However, further empirical evidence is required to comprehensively assess the efficacy of hair loss treatment and prevention using a formulation of caffeine and adenosine in specific proportions in shampoos. OBJECTIVES: This study aimed to evaluate a shampoo with caffeine and adenosine as a daily scalp care product for hair loss in 77 subjects aged 18-60 years. METHODS: The overall and local hair densities were assessed using professional cameras and dermoscopes at different magnifications and distances. Five hairs that came off the participant's head were randomly selected to measure hair diameter. The self-assessment questionnaires were filled on third month of product use. RESULTS: The combination of caffeine and adenosine in the shampoo significantly enhanced hair density compared to that of the baseline. The results revealed a significant reduction in hair loss. The hair diameters of the subjects did not change significantly. Most of the participants (71.05%) were satisfied with their hair after using the product. CONCLUSIONS: Shampoos containing caffeine and adenosine have been demonstrated to exert therapeutic benefits for reducing hair loss.

2.
J Cosmet Dermatol ; 23(4): 1351-1359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990616

RESUMEN

BACKGROUND: The human skin microbiome and lipidome are essential for skin homeostasis and barrier function, and have become a focus in both dermatological and cosmetic fields. However, the influence of surfactants commonly used in cosmetic products on the skin resident microbiome and lipidome remains poorly characterized. METHODS: We conducted self-control experiments to systematically study the effects of surfactant (sodium lauroyl sarcosinate [SLS]) on facial skin. Wrinkles, pores, porphyrins, and superficial lipids were examined to evaluate the biophysical state of skin. Quantitative real-time PCR was used to detect the numbers of bacteria and fungi. The diversity and structure of prokaryotic and eukaryotic microbiomes were assessed using 16S rDNA and ITS amplicon sequencing, respectively. Moreover, 22 lipids were identified to evaluate lipidome variations. SPSS software was used for statistical analysis. RESULTS: SLS in facial cleanser did not extensively influence skin biophysical parameters, but caused a decrease in porphyrin. After using the SLS-added facial cleanser for 3 weeks, the alpha diversity of the prokaryotic microbial community decreased significantly, while the eukaryotic microbial community showed a continuous downward trend but no statistically significant. A shift in the structure of prokaryotic microbiome was observed as a result of SLS exposure, mainly reflected by the increase in Acinetobacter, Escherichia-Shigella, Streptococcus, and Ralstonia, while the SLS had little effect on the structure of the eukaryotic microbiome. Furthermore, SLS exposure had a great impact on skin lipidome, mainly manifested by the increase of phosphatidylglycerol (PG) and phosphatidylcholine (PC), and the decrease of ceramides. Spearman's correlations analysis showed that Escherichia-Shigella, Pseudomonas, and Acinetobacter are positively correlated with PG and PC; however, the correlation is not statistically significant. CONCLUSION: In this study, we found the SLS in facial cleanser primarily affected lipidome and the prokaryotic microbiome of facial skin. These findings are useful for reminding us to be vigilant about the ingredients in personal care products, even the common ingredients, and designing effective formulations for repairing ecological balance of skin.


Asunto(s)
Cosméticos , Microbiota , Sarcosina/análogos & derivados , Humanos , Lipidómica , Piel , Tensoactivos , Cosméticos/farmacología , Lípidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA