Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Environ Sci (China) ; 149: 488-499, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181661

RESUMEN

Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide (N2O), while regional and global estimates have remained imprecise. This due to a lack of data and insufficient understanding of the multiple contributing factors. This study characterized the spatiotemporal variability in N2O concentrations and N2O diffusive fluxes and the contributing factors in Lake Wuliangsuhai, a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate. Dissolved N2O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L, displaying significant spatiotemporal variations. The lowest and highest concentrations were measured in summer and winter, respectively. The spatial distribution of N2O flux was consistent with that of N2O concentrations. Additionally, the hotspots of N2O emissions were detected within close to the main inflow of lake. The wide spatial and temporal variation in N2O emissions indicate the complexity and its relative importance of factors influencing emissions. N2O emissions in different lake zones and seasons were regulated by diverse factors. Factors influencing the spatial and temporal distribution of N2O concentrations and fluxes were identified as WT, WD, DO, Chl-a, SD and COD. Interestingly, the same factor demonstrated opposing effects on N2O emission in various seasons or zones. This research improves our understanding of N2O emissions in shallow eutrophic lakes in cold and arid areas.


Asunto(s)
Monitoreo del Ambiente , Lagos , Óxido Nitroso , Estaciones del Año , Óxido Nitroso/análisis , Lagos/química , China , Contaminantes Atmosféricos/análisis , Eutrofización , Análisis Espacio-Temporal , Contaminantes Químicos del Agua/análisis
2.
Beilstein J Org Chem ; 20: 2225-2233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286795

RESUMEN

An eco-friendly selective hydrolysis of chain α-oxo ketene N,S-acetals in water for the switchable synthesis of ß-keto thioesters and ß-keto amides is reported. In refluxing water, the hydrolysis reactions of α-oxo ketene N,S-acetals in the presence of 1.0 equiv of dodecylbenzenesulfonic acid effectively afforded ß-keto thioesters in excellent yield, while ß-keto amides were successfully obtained in excellent yield when the hydrolysis reactions were carried out in the presence of 3.0 equiv of NaOH. The green approach to ß-keto thioesters and ß-keto amides avoids the use of harmful organic solvents, thiols and thiolacetates as well as amines, which could result in serious environmental and safety issues.

3.
Cancer Med ; 13(17): e70117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39248131

RESUMEN

OBJECTIVE: Previous results about prognostic value of CD4+ T cells in follicular lymphoma (FL) remain controversial. METHODS: Immunohistochemistry was used to examine expression of positive CD4 cells in 103 patients with FL 1-3A. Early failure was described as failing to achieve event-free survival (EFS) at 12 or 24 months. RESULTS: There were 49 (47.6%) male and 54 (52.4%) females, with a median age of 54 years. Compared to patients with <20% of positive CD4 cells, patients with ≥20% of positive CD4 cells exhibited a significant lower risk of early failure (2-year EFS rate: 56.7% vs 73.5%, p = 0.047). When patients were stratified based on positive CD4 cell combined with FLIPI, the median EFS (p = 0.002) and median OS (p = 0.007) were significantly different. CONCLUSIONS: This study demonstrated that higher expression of positive CD4 cells predicts lower risk of early failure in follicular lymphoma, and combination analysis of CD4 and FLIPI could better predict disease relapse and survival outcome.


Asunto(s)
Linfocitos T CD4-Positivos , Linfoma Folicular , Humanos , Linfoma Folicular/mortalidad , Linfoma Folicular/patología , Linfoma Folicular/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Pronóstico , Anciano de 80 o más Años , Supervivencia sin Progresión
4.
Sports Med Health Sci ; 6(3): 287-294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234485

RESUMEN

Functional near-infrared spectroscopy (fNIRS) was used to explore the effects of sedentary behavior on the brain functional connectivity characteristics of college students in the resting state after recovering from Corona Virus Disease 2019 (COVID-19). Twenty-two college students with sedentary behavior and 22 college students with sedentary behavior and maintenance of exercise habits were included in the analysis; moreover, 8 â€‹min fNIRS resting-state data were collected. Based on the concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) in the time series, the resting-state functional connection strength of the two groups of subjects, including the prefrontal cortex (PFC) and the lower limb supplementary motor area (LS), as well as the functional activity and functional connections of the primary motor cortex (M1) were calculated. The following findings were demonstrated. (1) Functional connection analysis based on HbO2 demonstrated that in the comparison of the mean functional connection strength of homologous regions of interest (ROIs) between the sedentary group and the exercise group, there was no significant difference in the mean functional strength of the ROIs between the two groups ( p > 0.05 ). In the comparison of the mean functional connection strengths of the two groups of heterologous ROIs, the functional connection strengths of the right PFC and the right LS ( p = 0.009 7 ), the left LS ( p = 0.012 7 ), and the right M1 ( p = 0.030 5 ) in the sedentary group were significantly greater. The functional connection strength between the left PFC and the right LS ( p = 0.031 2 ) and the left LS ( p = 0.037 0 ) was significantly greater. Additionally, the functional connection strength between the right LS and the right M1 ( p = 0.037 0 ) and the left LS ( p = 0.043 8 ) was significantly greater. (2) Functional connection analysis based on HbR demonstrated that there was no significant difference in functional connection strength between the sedentary group and the exercise group ( p > 0.05 ) or between the sedentary group and the exercise group ( p > 0.05 ). Similarly, there was no significant difference in the mean functional connection strength of the homologous and heterologous ROIs of the two groups. Additionally, there was no significant difference in the mean ROIs functional strength between the two groups ( p > 0.05 ). Experimental results and graphical analysis based on functional connectivity indicate that in this experiment, college student participants who exhibited sedentary behaviors showed an increase in fNIRS signals. Increase in fNIRS signals among college students exhibiting sedentary behaviors may be linked to their status post-SARS-CoV-2 infection and the sedentary context, potentially contributing to the strengthened functional connectivity in the resting-state cortical brain network. Conversely, the fNIRS signals decreased for the participants with exercise behaviors, who maintained reasonable exercise routines under the same conditions as their sedentary counterparts. The results may suggest that exercise behaviors have the potential to mitigate and reduce the impacts of sedentary behavior on the resting-state cortical brain network.

5.
Nat Commun ; 15(1): 7573, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217151

RESUMEN

Characterizing the nature of hydrodynamical transport properties in quantum dynamics provides valuable insights into the fundamental understanding of exotic non-equilibrium phases of matter. Experimentally simulating infinite-temperature transport on large-scale complex quantum systems is of considerable interest. Here, using a controllable and coherent superconducting quantum simulator, we experimentally realize the analog quantum circuit, which can efficiently prepare the Haar-random states, and probe spin transport at infinite temperature. We observe diffusive spin transport during the unitary evolution of the ladder-type quantum simulator with ergodic dynamics. Moreover, we explore the transport properties of the systems subjected to strong disorder or a tilted potential, revealing signatures of anomalous subdiffusion in accompany with the breakdown of thermalization. Our work demonstrates a scalable method of probing infinite-temperature spin transport on analog quantum simulators, which paves the way to study other intriguing out-of-equilibrium phenomena from the perspective of transport.

6.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39066009

RESUMEN

Weather radar is an active remote sensing device used to monitor the full lifecycle changes in severe convective weather with high spatial and temporal resolution. Effective radar calibration is a crucial foundation for ensuring the high-quality application of observational data. This paper utilizes a UAV platform equipped with a high-precision RTK system and standard metal spheres to study the principles and methods of metal sphere calibration, constructing a complete calibration process and calibration accuracy evaluation metrics. Additionally, a collocated radar comparison observation experiment was conducted for cross-validation, and metal sphere calibration tests were performed on problematic radars. The experimental results indicate the following: (1) The combined application of a high-precision RTK system and a laser range camera can provide real-time position information on the metal sphere, improving the efficiency of radar target acquisition. (2) The calibration method based on UAV-suspended metal spheres can periodically conduct the quantitative calibration of Z and ZDR, achieving calibration accuracies within 0.5 dB and 0.2 dB, respectively, and supports the qualitative inspection of key parameters such as beamwidth and pulse width. (3) During field tests, a high success rate "coarse adjustment + fine adjustment + staring" sphere-finding technique was established, based on automatic switching between RHI, PPI, and FIX scanning modes. This method directs the UAV to adjust the metal sphere to the center of the radar distance bin, reducing the impact of uneven beam filling and bin crossing, ensuring the accuracy of scattering characteristic measurements.

7.
Phys Rev Lett ; 132(25): 250204, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996245

RESUMEN

The Hamiltonian, which determines the evolution of a quantum system, is fundamental in quantum physics. Therefore, it is crucial to implement high-precision generation and measurement of the Hamiltonian in a practical quantum system. Here, we experimentally demonstrate ultrahigh-precision Hamiltonian parameter estimation with a significant quantum advantage in a superconducting circuit via sequential control. We first observe the commutation relation for noncommuting operations determined by the system Hamiltonian, both with and without adding quantum control, verifying the commuting property of controlled noncommuting operations. Based on this control-induced commuting property, we further demonstrate Hamiltonian parameter estimation for polar and azimuth angles in superconducting circuits, achieving ultrahigh metrological gains in measurement precision exceeding the standard quantum limit by up to 16.0 and 16.1 dB at N=100, respectively.

8.
Front Chem ; 12: 1427670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010937

RESUMEN

Introduction: Tripterygium species have been traditionally used in Chinese medicine for treating various conditions. The aim of the study was to construct a drug-modified renal infarction targeting liposome (rTor-LIP) containing Tripterygium in order to improve the therapeutic effect on renal injury. Methods: rTor-LIP was prepared using the extruder method containing Tripterygium solution. The preparation was characterized by transmission electron microscopy, Marvin laser particle size analyzer, and Western blotting. In vitro experiments were conducted to verify the biocompatibility of rTor-LIP, and in vivo experiments were conducted to verify the therapeutic effect of rTor- LIP on renal injury. Results and discussion: The surface of rTor-LIP was regular and oval. In vitro results showed that after co-incubation with rTor-LIP, endothelial cells did not show significant apoptosis, and there were no significant abnormalities in the mitochondrial metabolism. The in vivo results showed that the morphology of endothelial cells in the rTor-LIP group was uniform and the cytoplasmic striations were clear, but the local striations had disappeared. Thus, rTor-LIP nano-targeted liposomes can effectively target hypoxic kidney tissue, providing a new idea for the treatment of renal infarction.

9.
J Phys Chem Lett ; 15(28): 7244-7253, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38976358

RESUMEN

Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems─ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.

10.
Soft Matter ; 20(26): 5212-5220, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904173

RESUMEN

Understanding how particles pack in space and the mechanisms underlying symmetry selection across soft matter is challenging. The Frank-Kasper (F-K) phase of complex spherical packing is amongst the most fascinating phases; however, it has not been observed in discotic liquid crystals until now. Herein, we report the first observation of F-K phases of charge transfer complexes (CTCs) obtained from triphenylene derivatives as donors and 2,4,7-trinitro-9-fluorenone as the acceptor. The CTCs were characterized using experimental and theoretical calculations, indicating that the F-K A15 cubic lattice possesses a unit cell containing 8 sphere-like supramolecules, each of which was self-assembled from 3 CTC complexes. The lattice constant was only 3.2 nm, which is by far the smallest for the A15 phase. Interestingly, the supramolecular assembly can be regarded as the molecular column splitting into isolated spherical fragments, impeding charge transfer and turning it into one insulator. This provides a simple and effective method for preparing asymmetric complex compounds for the design of unconventional self-assembled nanostructures.

13.
Ecotoxicol Environ Saf ; 281: 116621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901171

RESUMEN

Water replenishment is an important measure for maintaining and improving the aquatic environmental quality of lakes. The problems of water quality deterioration and water shortage can be alleviated by introducing water of higher quality. However, the mechanism of water replenishment in the improvement of the water quality and trophic status of lakes remains unclear. This study investigated water replenishment in Wuliangsuhai Lake (WLSHL) from 2011 to 2021 by collecting seasonal water samples and conducting laboratory analyses. Water replenishment was found to be capable of significantly improving lake water quality and alleviating eutrophication. It is worth noting that single long-term water replenishment measures have limitations in improving the water quality and trophic status. The whole process was divided into three stages according to the water quality and trophic status, namely the buffer period, decline period, and stable period. During the buffer period, the water quality and trophic status showed only slight improvement because of the small amount of water replenishment and the low proportion of higher-quality water from the Yellow River. In the decline period, with increasing water replenishment, the proportion of higher-quality water from the Yellow River gradually increased, leading to the most significant and stable degree of improvement. In the stable period, increases in the amount of water replenishment had little effect on improving the water quality and trophic status, which is attributable to the balance between internal pollutants (lake water-sediment), and the balance between internal-external pollutants (lake water-irrigation return flow + Yellow River water). On the premise of stable water quality, with eutrophication control as the management goal, the optimal water replenishment would be approximately 10.58 ×108 m3. Further necessary measures for solving aquatic environmental problems include the combination of sediment dredging, optimization of the water replenishment route, and implementation of quality management in water replenishment.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos , Calidad del Agua , Lagos/química , China , Estaciones del Año , Animales , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos , Ríos/química
14.
ACS Nano ; 18(20): 13428-13436, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38725103

RESUMEN

The Co-free Ni-rich layered cathodes become pivotal to reduce cost and increase benefit toward next-generation Li-ion batteries yet raise a major challenge for their extremely fragile cathode-electrolyte interface (CEI) film. Herein, we report the in situ construction of the Si/B-enriched organic-inorganic hybrid CEI films on LiNi0.9Mn0.1O2 (NM91) with the assistance of tris(trimethylsilyl) borate (TMSB) additive. The hybrid film exhibits superior Young's modulus, mechanical strength, and ductility, which greatly dissipate the microstrain of Co-free Ni-rich cathodes under various states of charge with high structural integrity. Furthermore, the surface oxygen anions have been significantly stabilized by bonding with the Si and B ions of TMSB with high safety. These merits enable a durable Co-free Ni-rich layered cathode with 96.9% and 87.7% capacity retentions (versus 72.7% and 70.2% of NM91) at a high rate of 5C and a high-temperature of 55 °C after 100 cycles. In a pouch-type full cell, 88.8% of initial capacity is still maintained after cycling at 1C for 500 times, greatly expediting the development and application of Co-free Ni-rich layered cathodes.

15.
BMC Cancer ; 24(1): 621, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773392

RESUMEN

BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) display high molecular heterogeneity, but the International Prognostic Index (IPI) considers only clinical indicators and has not been updated to include molecular data. Therefore, we developed a widely applicable novel scoring system with molecular indicators screened by artificial intelligence (AI) that achieves accurate prognostic stratification and promotes individualized treatments. METHODS: We retrospectively enrolled a cohort of 401 patients with DLBCL from our hospital, covering the period from January 2015 to January 2019. We included 22 variables in our analysis and assigned them weights using the random survival forest method to establish a new predictive model combining bidirectional long-short term memory (Bi-LSTM) and logistic hazard techniques. We compared the predictive performance of our "molecular-contained prognostic model" (McPM) and the IPI. In addition, we developed a simplified version of the McPM (sMcPM) to enhance its practical applicability in clinical settings. We also demonstrated the improved risk stratification capabilities of the sMcPM. RESULTS: Our McPM showed superior predictive accuracy, as indicated by its high C-index and low integrated Brier score (IBS), for both overall survival (OS) and progression-free survival (PFS). The overall performance of the McPM was also better than that of the IPI based on receiver operating characteristic (ROC) curve fitting. We selected five key indicators, including extranodal involvement sites, lactate dehydrogenase (LDH), MYC gene status, absolute monocyte count (AMC), and platelet count (PLT) to establish the sMcPM, which is more suitable for clinical applications. The sMcPM showed similar OS results (P < 0.0001 for both) to the IPI and significantly better PFS stratification results (P < 0.0001 for sMcPM vs. P = 0.44 for IPI). CONCLUSIONS: Our new McPM, including both clinical and molecular variables, showed superior overall stratification performance to the IPI, rendering it more suitable for the molecular era. Moreover, our sMcPM may become a widely used and effective stratification tool to guide individual precision treatments and drive new drug development.


Asunto(s)
Inteligencia Artificial , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , China/epidemiología , Anciano , Adulto , Anciano de 80 o más Años , Adulto Joven , Adolescente
16.
Talanta ; 274: 126063, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599124

RESUMEN

Hypochlorite (ClO-), as one of reactive oxygen species (ROS), is closely linked to various illnesses and is essential for the proper functioning of immune system. Hence, monitoring and assessing ClO- levels in organisms are extremely important for the clinical diagnosis of ClO--related disorders. In this study, a novel ClO--selective fluorescent probe, DCP-ClO, was synthesized with dicyanoisophorone-xanthene unit as parent fluorophore, which displayed excellent selectivity towards ClO-, near-infrared emission (755 nm), large Stokes shift (100 nm), real-time response to ClO-, high sensitivity (LOD = 3.95 × 10-8 M), and low cytotoxicity. The recognition mechanism of DCP-ClO towards ClO- was confirmed to be a typical ICT process by HPLC-MS, HR-MS, 1H NMR and theoretical calculations. Meanwhile, DCP-ClO demonstrated remarkable efficacy in monitoring ClO- levels in water samples and eye-catching ability in imaging endogenous/exogenous ClO- in living organisms, which verified its potential as a powerful tool for the recognition of ClO- in complex biological systems.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Ácido Hipocloroso/análisis , Ácido Hipocloroso/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Animales , Imagen Óptica , Rayos Infrarrojos , Ratones
17.
Adv Mater ; 36(23): e2313354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589015

RESUMEN

Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.

18.
Angew Chem Int Ed Engl ; 63(26): e202401208, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38597254

RESUMEN

Manipulation of periodic micro/nanostructures in polymer film is of great importance for academics and industrial applications in anticounterfeiting. However, with the increasing demand on information security, materials with time-dependent features are urgently required, especially the material where the same information can appear more than once on the time scale. Here, one concise strategy to realize time-dependent anticounterfeiting and "double-lock" information encryption based on a host-guest system is proposed, with one photoresponsive azopolymer as the host and one liquid-crystalline molecule as the guest. The system exhibits a tunable mass transport in pre-designed periodic micro/nanostructures by tailoring the process of cis-to-trans recovery of azo groups and assembly of mesogenic trans-isomers, resulting in a dynamic structural color in film. Taking advantage of this extraordinary feature, time-dependent dynamic anticounterfeiting has been achieved. More importantly, the time of each state's appearance in the whole process can be modulated by changing the host-guest ratio. Combining the manipulatable process of mass transport with the unique decoding method, the stored information in film can be decrypted correctly. This work provides an unprecedented dynamic approach for advanced anticounterfeiting technology with a higher level of security and high-end applications in information encryption.

19.
IUBMB Life ; 76(8): 563-576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38450584

RESUMEN

Particulate matter 2.5 (PM2.5) has been implicated in lung injury and various cancers, yet its precise mechanistic role remains elusive. To elucidate the key signaling pathways underpinning PM2.5-induced lung cancer progression, we embarked on a study examining the impact of PM2.5 both in vitro and in vivo. Lung cancer cell lines, A549 and H157, were employed for the in vitro investigations. Overexpression or knockdown techniques targeting the hnRNPA2B1 protein were implemented. Lung cancer cells were treated with a medium containing PM2.5 and subsequently prepared for in vitro evaluations. Cell growth, invasion, and migration were gauged using transwell and CCK-8 assays. Apoptosis was ascertained through flow cytometry and western blotting of pertinent proteins. Seahorse analyses probed the influence of PM2.5 on lung cancer energy metabolism. The RNA stability assay was employed to discern the impact of PM2.5 on the stability of oxidative phosphorylation-related genes in lung cancer. Our findings revealed that PM2.5 augmented cell proliferation, migration, and invasion rates. Similarly, a diminished apoptosis rate was observed in PM2.5-treated cells. Elevated expression of hnRNPA2B1 was detected in lung cancer cells exposed to PM2.5. Moreover, in cells treated with PM2.5, hnRNPA2B1 knockdown markedly curtailed cell proliferation by inducing G1-S cell cycle arrest and bolstered lung cancer cell apoptosis in vitro; it also curbed xenograft tumor growth. Mechanistically, our data suggest that PM2.5 undermines the stability of mRNA transcripts associated with oxidative phosphorylation (OXPHOS) and augments the formation of processing bodies (P-bodies), leading to an upsurge in OXPHOS levels. In conclusion, PM2.5 appears to drive lung cancer progression and migration by modulating the energy metabolism of lung cancer in a hnRNPA2B1-dependent manner.


Asunto(s)
Apoptosis , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Neoplasias Pulmonares , Fosforilación Oxidativa , Material Particulado , Estabilidad del ARN , Animales , Humanos , Ratones , Células A549 , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Material Particulado/efectos adversos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Environ Geochem Health ; 46(4): 116, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478189

RESUMEN

Ecological pollution caused by heavy metals released from sediments is a worldwide concern. However, the effect of changes in sediment speciation on their release of heavy metals has not been adequately reported. In this study, the research focused on Pb and Cr in the ice period of Wuliangsuhai. This study analyzed changes in the sediment speciation of Pb and Cr before and after a release experiment using four risk assessment methods while varying the temperature, pH, and salinity of the water column. The results indicated that the total concentration of Pb ranged from 11.17 to 24.25 mg/kg, while for Cr it ranged from 42.26 to 69.68 mg/kg. Both elements exhibited mild contamination. The release of Pb and Cr from sediments increases with increasing water temperature, mainly due to the conversion of the residual fraction of Pb to the Fe-Mn oxide fraction and Cr converting more residual fraction to the organic matter and sulfide fraction. The release of sediment Pb and Cr decreased with increasing pH, with Pb converting more acid extractable fraction to the residual fraction and Cr converting more organic matter and sulfide fraction to the residual fraction. In contrast, the release of Pb and Cr increased and then decreased with increasing salinity. For Pb, the acid extractable fraction was more susceptible to conversion to the residual fraction by environmental influences, whereas for Cr, the organic matter and sulfide fraction were susceptible to conversion to the residual fraction.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lagos , Hielo , Plomo , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Agua , Medición de Riesgo , Sulfuros , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...