Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091408

RESUMEN

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Gemcitabina , Resistencia a Antineoplásicos , Serina/metabolismo , Vías Biosintéticas , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Isocitrato Deshidrogenasa/metabolismo
2.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996458

RESUMEN

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Macrófagos/metabolismo , Inmunoterapia , Linfocitos T CD8-positivos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
3.
Int J Biol Macromol ; 253(Pt 7): 127500, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858644

RESUMEN

To improve the hydration properties of high-temperature pressed peanut protein isolate (HPPI), we investigated the effect of cold plasma (CP) oxidation on functional and structural properties. Compared to HPPI, the hydrated molecules number and the surface contact angle were significantly decreased at 70 W, from 77.2 × 109 to 17.7 × 109 and from 85.74° to 57.81°, respectively. The reduction of the sulfhydryl content and the increase of the disulfide bond and di-tyrosine content indicated that the structural transformation was affected by the oxidation effect. In terms of structural changes, a stretched tertiary structure, ordered secondary structure, and rough apparent structure were observed after CP treatment. Additionally, the enhancement of surface free energy and group content such as -COOH, -CO and -OH on the surface of HPPI contributed to the formation of hydrated crystal structures. In general, the oxidation effect of CP effectively improved the hydration properties of HPPI and broaden its application field.


Asunto(s)
Arachis , Gases em Plasma , Arachis/química , Temperatura , Proteínas , Oxidación-Reducción
4.
Front Pharmacol ; 14: 1118017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124193

RESUMEN

Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.

6.
Sci Transl Med ; 14(626): eabf0992, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34985967

RESUMEN

High CD8+ T cell infiltration in colorectal cancer (CRC) should suggest a favorable prognosis and a satisfactory response to immunotherapy; however, the vast majority of patients with CRC do not benefit from immunotherapy due to poor T cell infiltration. Therefore, a better understanding of the mechanisms for T cell exclusion from CRC tumors is needed. Tribbles homolog 3 (TRIB3) has been implicated as an oncoprotein, but its role in regulating antitumor immune responses has not been defined. Here, we demonstrated that TRIB3 inhibits CD8+ T cell infiltration in various CRC mouse models. We showed that TRIB3 was acetylated by acetyltransferase P300, which inhibited ubiquitination and subsequent proteasomal degradation of TRIB3. Ectopically expressed TRIB3 inhibited signal transducer and activator of transcription 1 (STAT1) activation and STAT1-mediated CXCL10 transcription by enhancing the epidermal growth factor receptor signaling pathway, causing a reduction in tumor-infiltrating T cells. Genetic ablation of Trib3 or pharmacological acceleration of TRIB3 degradation with a P300 inhibitor increased T cell recruitment and sensitized CRCs to immune checkpoint blockade therapy. These findings identified TRIB3 as a negative modulator of CD8+ T cell infiltration in CRCs, highlighting a potential therapeutic target for treating immunologically "cold" CRCs.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Evasión Inmune , Proteínas Serina-Treonina Quinasas , Proteínas Represoras , Animales , Linfocitos T CD8-positivos , Proteínas de Ciclo Celular/metabolismo , Quimiocina CXCL10/metabolismo , Neoplasias Colorrectales/patología , Humanos , Inmunoterapia , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
7.
Cancer Innov ; 1(1): 92-113, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38089453

RESUMEN

Ferroptosis is a newly discovered form of cell death that is characterized by the accumulation of iron-dependent lipid peroxidation. Research on ferroptosis has seen exponential growth over the past few years. Tumor cells are strongly dependent on iron for their growth, which makes them develop mechanisms to increase iron uptake and inhibit iron output, thereby completing iron accumulation. Ferroptosis can be induced or inhibited by various stresses through multiple mechanisms, making it stands at the crossroads of stresses related cancer cell fate determination. In this review, we give a brief summary of ferroptosis hallmarks and provide a systematic analysis of the current molecular mechanisms and regulatory networks of diverse stress conditions on ferroptosis. We also discuss the relationships between ferroptosis and cancer therapy responses to further understand potential targets and therapeutic strategies for cancer treatment.

8.
Front Immunol ; 13: 1076121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591285

RESUMEN

Objective: The Lactate-to-Albumin Ratio (LAR) has been applied as a new predictor in sepsis, heart failure, and acute respiratory failure. However, the role of LAR in predicting all-cause mortality in patients with acute pancreatitis has not been evaluated. Therefore, this study aimed to elucidate the correlation between LAR and 28-d all-cause mortality in patients with Acute Pancreatitis (AP). Methods: This study is a retrospective cohort study with the data from the MIMIC-IV (v1.0) database. We included adult patients with acute pancreatitis who were admitted to the intensive care unit in the study. The primary outcome was to evaluate the ability of LAR to predict death at 28-d of hospital admission in patients with AP. Results: A total of 539 patients with acute pancreatitis were included in this study. They were divided into a survival group (486 patients) and a death group (53 patients) according to whether they survived within 28-d of admission, and the mortality rate of patients within 28-d of admission was 9.8%. LAR was shown to be an independent predictor of all-cause mortality within 28-d of admission in patients with AP by multivariate COX regression analysis (HR, 1.59; 95% CI, 1.23 - 2.05; P < 0.001). the Area Under the Curve (AUC) value for LAR was 74.26% (95% CI: 67.02% - 81.50%), which was higher than that for arterial blood lactate (AUC = 71.25%) and serum albumin (AUC = 65.92%) alone. It was not inferior even when compared to SOFA (AUC = 75.15%). The optimal cutoff value for separating the survival and death groups according to Receiver Operating Characteristic (ROC) was found to be 1.1124. plotting Kaplan-Meier analysis with this cutoff value showed that patients with LAR ≥ 1.1124 had significantly higher all-cause mortality within 28-d of admission than those with LAR < 1.1124 (P < 0.001). The final subgroup analysis showed no significant interaction of LAR with each subgroup (P for interaction: 0.06 - 0.974). Conclusion: LAR can be used as an independent predictor of all-cause mortality in AP patients within 28-d of admission, with superior prognostic performance than arterial blood lactate or serum albumin alone.


Asunto(s)
Pancreatitis , Adulto , Humanos , Estudios Retrospectivos , Ácido Láctico , Enfermedad Aguda , Albúmina Sérica
10.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...