Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Sci Rep ; 14(1): 26515, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39489772

RESUMEN

Federated Learning (FL) uses local data to perform distributed training on clients and combines resulting models on a public server to mitigate privacy exposure by avoiding data sharing. However, further research indicates that communication overheads continue to be the primary limitation for FL relative to alternative considerations. This is especially true when training models on non-independent and identically distributed data, such as financial default risk data, where FL's computational costs increase significantly. This study aims to address financial credit risk data by establishing a dynamic receptive field adjustment mechanism for feature extraction, efficiently extracting default features with varying distributions and attributes. Additionally, by constructing a distributed feature fusion architecture, characteristics from both local and overarching models are aggregated to attain higher accuracy with lower transmission costs. Experimental results demonstrate that the proposed FL framework can utilize dynamic receptive fields to allocate convolutional kernel weights, thereby improving feature extraction. In the feature fusion stage, the proposed Multi-Fusion strategy efficiently customizes the aggregation of features from local and global models. The final solution reduces the communication rounds in federated learning by approximately 80%.

2.
Animals (Basel) ; 14(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39199878

RESUMEN

Currently, nearly 70% of giant panda populations are facing survival challenges. The introduction of wild individuals can bring vitality to them. To explore this possibility, we hypothetically introduced giant pandas from Tangjiahe and Wanglang into Liziping and Daxiangling Nature Reserves. We collected feces from these areas and analyzed the genetic diversity and population viability before and after introduction using nine microsatellite loci. The results showed the genetic level and viability of the large populations were better than the small populations. We investigated the effects of time intervals (2a, 5a, and 10a; year: a) and gender combinations (female: F; male: M) on the rejuvenation of small populations. Finally, five introduction plans (1F/2a, 2F/5a, 1F1M/5a, 3F/10a, and 2F1M/10a) were obtained to make Liziping meet the long-term survival standard after 100 years, and six plans (1F/2a, 2F/5a, 1F1M/5a, 4F/10a, 3F1M/10a, and 2F2M/10a) were obtained in Daxiangling. The more females were introduced, the greater the impact on the large populations. After introducing individuals, the number of alleles and expected heterozygosity of the Liziping population are at least 6.667 and 0.688, and for the Daxiangling population, they are 7.111 and 0.734, respectively. Our study provides theoretical support for the translocation of giant pandas, a reference for the restoration of other endangered species worldwide.

3.
Int J Biol Macromol ; 277(Pt 3): 134368, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217033

RESUMEN

Existing issues with bio-based adhesives, such as complex preparation processes, high energy consumption, and production costs, still need to be addressed. In our study, APTES was grafted onto microcrystalline cellulose (MCC) to generate active aminated cellulose, and then reacted with the epoxide group in glycerol triglycidyl ether (GTE) through a swelling strategy under alkaline solvent, forming a network structure via covalent cross-linking. The adhesive exhibits superior bonding performance and water-resistant property in the bonding strength test of poplar plywood, with a dry shear strength of 2.40 MPa, a wet shear strength of 2.16 MPa after soaking in 63 °C hot water, and a wet shear strength of 1.79 MPa after soaking in boiling water. In terms of cost calculation, the theoretical production cost of AC-GTE adhesive is calculated to be 5303.7 RMB per ton, which is comparable to that of phenol-formaldehyde (PF) resin and other petrochemical-based adhesives, and significantly lower than that of isocyanate-based adhesives. These research results can provide a practical example for producing high-efficiency, aldehyde-free, and low-cost bio-based adhesives.


Asunto(s)
Adhesivos , Celulosa , Madera , Celulosa/química , Madera/química , Adhesivos/química , Agua/química , Resistencia al Corte , Álcalis/química , Polímeros/química , Formaldehído/química , Populus/química
4.
Heliyon ; 10(15): e35519, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170425

RESUMEN

This study investigates the critical role of green finance in enhancing environmental and economic resilience during China's post-COVID-19 recovery. Employing sophisticated econometric techniques, including the Vector Error Correction Model (VECM) and Nonlinear Autoregressive Distributed Lag (NARDL) model, the effectiveness of green finance policies and instruments is rigorously assessed during the years 1986-2022. The findings reveal that green finance initiatives significantly fund sustainable projects and drive economic revitalization, marking substantial progress in China's eco-friendly recovery. Essential areas for improvement identified include robust policy support, technological innovation, and stronger international collaboration. Specifically, leveraging green finance effectively necessitates coordinated efforts across various sectors, ensuring it underpins China's sustainable development and resilience amid global economic challenges. The study recommends enhancing green finance mechanisms through comprehensive policy frameworks, fostering green technology innovation, and developing global partnerships to address environmental sustainability and economic recovery synergistically.

5.
Adv Healthc Mater ; : e2401909, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155419

RESUMEN

Pulmonary hypertension (PH) is a life-threatening cardiovascular disease with a lack of effective treatment options. Nanozymes, though promising for PH therapy, pose safety risks due to their metallic nature. Here, a non-metallic nanozyme is reported for the treatment of monocrotaline (MCT)-induced PH with a therapeutic mechanism involving the ROS/TGF-ß1 signaling. The synthesized melanin-polyvinylpyrrolidone-polyethylene glycol (MPP) nanoparticles showcase ultra-small size, excellent water solubility, high biocompatibility, and remarkable antioxidant capacity. The MPP nanoparticles are capable of effectively eliminating ROS in isolated pulmonary artery smooth muscle cells (PASMCs) from PH rats, and significantly reduce PASMC proliferation and migration. In vivo results from a PH model demonstrate that MPP nanoparticles significantly increase pulmonary artery acceleration time, decrease wall thickening and PCNA expression in lung tissues, as evidenced by echocardiograpy, histology and immunoblot analysis. Additionally, MPP nanoparticles treatment improve running capacity, decrease Fulton index, and attenuate right ventricular fibrosis in MCT-PH rats by using treadmill test, picrosirius red, and trichrome Masson staining. Further transcriptomic and biochemical analyses reveal that inhibiting ROS-driven activation of TGF-ß1 in the PA is the mechanism by which MPP nanoparticles exert their therapeutic effect. This study provides a novel approach for treating PH with non-metallic nanozymes based on a well-understood mechanism.

6.
Anal Methods ; 16(30): 5272-5279, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39016035

RESUMEN

Brown adipose tissue (BAT), characterized by the presence of numerous mitochondria, plays a key role in metabolism and energy expenditure. Accurately reporting the presence and activation of BAT is beneficial to study obesity, diabetes, and other metabolic disorders. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-radioactivity, and simple operation. However, most NIR probes for BAT imaging exhibit small Stokes shifts, which may lead to self-quenching, reducing the signal-to-noise ratio, and introducing cross-talk. Herein, we rationally designed and synthesized a series of hemicyanine-based NIR fluorescent probes HCYBAT-1-3. Among them, HCYBAT-1 demonstrated favorable properties such as near-infrared emission (776 nm), large Stokes shift (139 nm), good biocompatibility and specific mitochondrial targeting (Pearson's colocalization coefficient of 0.87). Meanwhile, HCYBAT-1 was successfully employed to differentiate BAT from white adipose tissue (WAT). Quantitative analysis of NIR fluorescent images showed that HCYBAT-1 could be used for real-time monitoring of BAT activation in mice stimulated by norepinephrine (NE) and cold exposure. Overall, probe HCYBAT-1 showcased its efficacy in non-invasive evaluation of BAT metabolism in vivo with high selectivity and sensitivity.


Asunto(s)
Tejido Adiposo Pardo , Colorantes Fluorescentes , Imagen Óptica , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Ratones , Imagen Óptica/métodos , Carbocianinas/química , Carbocianinas/síntesis química , Ratones Endogámicos C57BL , Espectroscopía Infrarroja Corta/métodos , Mitocondrias/metabolismo , Masculino
7.
Small ; 20(44): e2401061, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38963320

RESUMEN

The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.


Asunto(s)
Imagen por Resonancia Magnética , Accidente Cerebrovascular , Animales , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Dextranos/química , Ratas , Compuestos Férricos/química , Ratas Sprague-Dawley , Masculino , Nanopartículas Magnéticas de Óxido de Hierro/química , Medios de Contraste/química , Infarto de la Arteria Cerebral Media/diagnóstico por imagen
8.
Adv Sci (Weinh) ; 11(32): e2404112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923806

RESUMEN

Multidrug resistance (MDR) is a major obstacle limiting the effectiveness of chemotherapy against cancer. The combination strategy of chemotherapeutic agents and siRNA targeting drug efflux has emerged as an effective cancer treatment to overcome MDR. Herein, stimuli-responsive programmable tetrahedral DNA-RNA nanocages (TDRN) have been rationally designed and developed for dynamic co-delivery of the chemotherapeutic drug doxorubicin and P-glycoprotein (P-gp) siRNA. Specifically, the sense and antisense strand sequences of the P-gp siRNA, which are programmable bricks with terminal disulfide bond conjugation, are precisely embedded in one edge of the DNA tetrahedron. TDRN provides a stimuli-responsive release element for dynamic control of functional cargo P-gp siRNA that is significantly more stable than the "tail-like" TDN nanostructures. The stable and highly rigid 3D nanostructure of the siRNA-organized TDRN nanocages demonstrated a notable improvement in the stability of RNase A and mouse serum, as well as long-term storage stability for up to 4 weeks, as evidenced by this study. These biocompatible and multifunctional TDRN nanocarriers with gold nanocluster-assisted delivery (TDRN@Dox@AuNCp) are successfully used to achieve synergistic RNAi/Chemo-therapy in vitro and in vivo. This programmable TDRN drug delivery system, which integrates RNAi therapy and chemotherapy, offers a promising approach for treating multidrug-resistant tumors.


Asunto(s)
ADN , Doxorrubicina , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , ARN Interferente Pequeño , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Animales , Ratones , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , ADN/genética , ADN/química , Humanos , Nanoestructuras/química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Ratones Desnudos
9.
iScience ; 27(4): 109511, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38571759

RESUMEN

Ferroptosis and ferritinophagy play critical roles in various disease contexts. Herein, we observed that ferroptosis and ferritinophagy were induced both in the brains of mice with diabetes mellitus (DM) and neuronal cells after high glucose (HG) treatment, as evidenced by decreases in GPX4, SLC7A11, and ferritin levels, but increases in NCOA4 levels. Interestingly, melatonin administration ameliorated neuronal damage by inhibiting ferroptosis and ferritinophagy both in vivo and in vitro. At the molecular level, we found that not only the ferroptosis inducer p53 but also the ferritinophagy mediator NCOA4 was the potential target of miR-214-3p, which was downregulated by DM status or HG insult, but was increased after melatonin treatment. However, the inhibitory effects of melatonin on ferroptosis and ferritinophagy were blocked by miR-214-3p downregulation. These findings suggest that melatonin is a potential drug for improving diabetic brain damage by inhibiting p53-mediated ferroptosis and NCOA4-mediated ferritinophagy through regulating miR-214-3p in neurons.

10.
JCI Insight ; 9(7)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441961

RESUMEN

Programmed cell death protein 1 (PD-1), a coinhibitory T cell checkpoint, is also expressed on macrophages in pathogen- or tumor-driven chronic inflammation. Increasing evidence underscores the importance of PD-1 on macrophages for dampening immune responses. However, the mechanism governing PD-1 expression in macrophages in chronic inflammation remains largely unknown. TGF-ß1 is abundant within chronic inflammatory microenvironments. Here, based on public databases, significantly positive correlations between PDCD1 and TGFB1 gene expression were observed in most human tumors. Of note, among immune infiltrates, macrophages as the predominant infiltrate expressed higher PDCD1 and TGFBR1/TGFBR2 genes. MC38 colon cancer and Schistosoma japonicum infection were used as experimental models for chronic inflammation. PD-1hi macrophages from chronic inflammatory tissues displayed an immunoregulatory pattern and expressed a higher level of TGF-ß receptors. Either TGF-ß1-neutralizing antibody administration or macrophage-specific Tgfbr1 knockdown largely reduced PD-1 expression on macrophages in animal models. We further demonstrated that TGF-ß1 directly induced PD-1 expression on macrophages. Mechanistically, TGF-ß1-induced PD-1 expression on macrophages was dependent on SMAD3 and STAT3, which formed a complex at the Pdcd1 promoter. Collectively, our study shows that macrophages adapt to chronic inflammation through TGF-ß1-triggered cooperative SMAD3/STAT3 signaling that induces PD-1 expression and modulates macrophage function.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Proteína smad3/metabolismo , Factor de Transcripción STAT3/metabolismo
11.
J Hepatol ; 80(2): 194-208, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38438948

RESUMEN

BACKGROUND & AIMS: Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS: Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS: We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS: Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS: Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apoptosis , Concanavalina A , Modelos Animales de Enfermedad , Hepatocitos , Inflamación
12.
Bioorg Chem ; 146: 107285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547721

RESUMEN

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Asunto(s)
Quinasas Ciclina-Dependientes , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Quinasa 2 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Diseño de Fármacos , Descubrimiento de Drogas
13.
Int J Biol Macromol ; 265(Pt 2): 131053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521299

RESUMEN

How to efficiently produce high performance plywood is of particular interest, while its sensitivity to moisture is overcome. This paper presents a simple and scalable strategy for the preparation of high-performance plywood based on the chemical bonding theory; a wood interfacial functionalized platform (WIFP) based on (3-aminopropyl) triethoxysilane (APTES) was established. Interestingly, the APTES-enhanced dialdehyde cellulose-based adhesive (DAC-APTES) was able to effectively establish chemically active adhesive interfaces; the dry/wet shear strength of WIFP/DAC-APTES adhesive was 3.15/1.31 MPa, which was much higher than 0.7 MPa (GB/T 9846-2015). The prepared plywood showed excellent wood-polymer interface adhesion, which exceeded the force that the wood itself could withstand. In addition, the DAC-APTES adhesive exhibits moisture evaporation-induced curing behavior at room temperature and can easily support the weight of an adult weighing 65.7 Kg. This research provides a novel approach for functionalized interface design of wood products, an effective means to prepare high-performance plywood.


Asunto(s)
Celulosa , Silanos , Madera , Adulto , Humanos , Polímeros , Propilaminas
14.
ACS Appl Mater Interfaces ; 16(6): 7950-7960, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306456

RESUMEN

Polysaccharide-based adhesives, especially chitosan (CS)-derived adhesives, serve as promising sustainable alternatives to traditional adhesives. However, most demonstrate a poor adhesive strength. Inspired by the inherent layered structure of marine arthropods (lobsters), a core-shell structure (SiO2-NH2@OPG) with amine-functionalized silica (SiO2-NH2) as the core and oxidized pyrogallol (OPG) as the shell is prepared in this study. The compound is blended with CS to produce a structural biomimetic wood adhesive (SiO2-NH2@OPG/CS) with excellent performance. In addition to thermocompressive curing, this adhesive exhibits a water-evaporation-induced curing behavior at room temperature. With reference to the design mechanism of the lobster cuticle, this microphase-separated structure consists of clustered nanofibers with varying amounts of SiO2-NH2@OPG particles between the fibers. This intriguing microphase structure and its mechanical effects could offer a powerful solution for improving the functional modification of wood composites.


Asunto(s)
Quitosano , Quitosano/química , Adhesivos/química , Biomimética , Dióxido de Silicio
15.
Genes (Basel) ; 15(1)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254979

RESUMEN

Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing. Combined with other published mitogenomes, we conducted the first comprehensive comparative mitogenome analysis of Muscicapidae birds and reconstructed the phylogenetic relationships between Muscicapidae and related groups. The T. indicus mitogenome was 16,723 bp in size, and it possessed the typical avian mitogenome structure and organization. Most PCGs of T. indicus were initiated strictly with the typical start codon ATG, while COX1 and ND2 were started with GTG. RSCU statistics showed that CUA, CGA, and GCC were relatively high frequency in the T. indicus mitogenome. T. cyanurus and T. indicus shared very similar mitogenomic features. All 13 PCGs of Muscicapidae mitogenomes had experienced purifying selection. Specifically, ATP8 had the highest rate of evolution (0.13296), whereas COX1 had the lowest (0.01373). The monophylies of Muscicapidae, Turdidae, and Paradoxornithidae were strongly supported. The clade of ((Muscicapidae + Turdidae) + Sturnidae) in Passeriformes was supported by both Bayesian Inference and Maximum likelihood analyses. The latest taxonomic status of many passerine birds with complex taxonomic histories were also supported. For example, Monticola gularis, T. indicus, and T. cyanurus were allocated to Turdidae in other literature; our phylogenetic topologies clearly supported their membership in Muscicapidae; Paradoxornis heudei, Suthora webbiana, S. nipalensis, and S. fulvifrons were formerly classified into Muscicapidae; we supported their membership in Paradoxornithidae; Culicicapa ceylonensis was originally classified as a member of Muscicapidae; our results are consistent with a position in Stenostiridae. Our study enriches the genetic data of T. indicus and provides new insights into the molecular phylogeny and evolution of passerine birds.


Asunto(s)
Genoma Mitocondrial , Passeriformes , Pájaros Cantores , Animales , Passeriformes/genética , Filogenia , Genoma Mitocondrial/genética , Teorema de Bayes , Proteínas del Grupo Polycomb
16.
Adv Sci (Weinh) ; 11(11): e2307823, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164827

RESUMEN

The magnetic hyperthermia-based combination therapy (MHCT) is a powerful tumor treatment approach due to its unlimited tissue penetration depth and synergistic therapeutic effect. However, strong magnetic hyperthermia and facile drug loading are incompatible with current MHCT platforms. Herein, an iron foam (IF)-drug implant is established in an ultra-facile and universal way for ultralow-power MHCT of tumors in vivo for the first time. The IF-drug implant is fabricated by simply immersing IF in a drug solution at an adjustable concentration for 1 min. Continuous metal structure of IF enables ultra-high efficient magnetic hyperthermia based on eddy current thermal effect, and its porous feature provides great space for loading various hydrophilic and hydrophobic drugs via "capillary action". In addition, the IF has the merits of low cost, customizable size and shape, and good biocompatibility and biodegradability, benefiting reproducible and large-scale preparation of IF-drug implants for biological application. As a proof of concept, IF-doxorubicin (IF-DOX) is used for combined tumor treatment in vivo and achieves excellent therapeutic efficacy at a magnetic field intensity an order of magnitude lower than the threshold for biosafety application. The proposed IF-drug implant provides a handy and universal method for the fabrication of MHCT platforms for ultralow-power combination therapy.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Implantes de Medicamentos , Hierro , Neoplasias/tratamiento farmacológico , Doxorrubicina , Hipertermia Inducida/métodos , Campos Magnéticos
17.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172124

RESUMEN

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Asunto(s)
Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Interleucina-17/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Enfermedad Aguda
18.
Cell Chem Biol ; 31(3): 452-464.e10, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37913771

RESUMEN

Various biological agents have been developed to target tumor necrosis factor alpha (TNF-α) and its receptor TNFR1 for the rheumatoid arthritis (RA) treatment, whereas small molecules modulating such cytokine receptors are rarely reported in comparison to the biologicals. Here, by revealing the mechanism of action of vinigrol, a diterpenoid natural product, we show that inhibition of the protein disulfide isomerase (PDI, PDIA1) by small molecules activates A disintegrin and metalloprotease 17 (ADAM17) and then leads to the TNFR1 shedding on mouse and human cell membranes. This small-molecule-induced receptor shedding not only effectively blocks the inflammatory response caused by TNF-α in cells, but also reduces the arthritic score and joint damage in the collagen-induced arthritis mouse model. Our study indicates that targeting the PDI-ADAM17 signaling module to regulate the shedding of cytokine receptors by the chemical approach constitutes a promising strategy for alleviating RA.


Asunto(s)
Artritis Reumatoide , Diterpenos , Ratones , Humanos , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteómica , Artritis Reumatoide/tratamiento farmacológico , Proteína ADAM17
19.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091408

RESUMEN

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Gemcitabina , Resistencia a Antineoplásicos , Serina/metabolismo , Vías Biosintéticas , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Isocitrato Deshidrogenasa/metabolismo
20.
Med Oncol ; 40(12): 358, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966546

RESUMEN

Although some studies in China have suggested Huachansu (HCS) combined with chemotherapy is effective in the treatment of various cancers, there are few studies on colorectal cancer (CRC), especially in postoperative adjuvant chemotherapy. The aim of this study was to test the hypothesis that HCS combined with adjuvant chemotherapy would improve survival probability in resected CRC patients. This was a prospective, open-label, randomized phase II study. Patients with stage III or high-risk stage II resected CRC were randomly assigned to the chemotherapy and HCS + chemotherapy groups. The Chemotherapy group was treated with the FOLFOX regimen for ≥ 6 cycles or the CAPEOX regimen for ≥ 4 cycles. The HCS + chemotherapy group was treated with HCS on the basis of the chemotherapy group. The primary endpoint was 3-year disease-free survival (DFS), and the secondary endpoints were 3-year overall survival (OS) and toxicity. A total of 250 patients were included in this study (126 chemotherapy, 124 HCS + chemotherapy). There were significant differences in 3-year DFS between the two groups (median 28.7 vs. 31.6 months, respectively; P = 0.027), but no significant differences in 3-year OS between the two groups (median 32.7 vs. 34 months, respectively; P = 0.146). No patients experienced grade four adverse events, and the rates of leukopenia, neutropenia, and diarrhea in the HCS + chemotherapy group were lower than that those in the chemotherapy group. HCS combined with adjuvant chemotherapy after radical resection for patients with stage III or high-risk stage II CRC was demonstrated to be an effective and feasible treatment.


Asunto(s)
Venenos de Anfibios , Neoplasias Colorrectales , Humanos , Estudios Prospectivos , Quimioterapia Adyuvante , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...