Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chin J Integr Med ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532152

RESUMEN

OBJECTIVE: To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS: Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 ß, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 ß were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS: SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 ß, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS: SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.

2.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37610554

RESUMEN

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Pez Cebra , Inhibidor NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción STAT3/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
Phytomedicine ; 119: 154977, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506573

RESUMEN

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , Dengue/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico , Serogrupo , Membrana Celular , Antivirales/farmacología , Antivirales/uso terapéutico , Citoplasma/metabolismo
4.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331452

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Salvia miltiorrhiza , Animales , Ratones , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Pez Cebra , Receptor Nicotínico de Acetilcolina alfa 7 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259408

RESUMEN

BACKGROUND: At present, about half of the world's population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). METHODS: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. RESULTS: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. CONCLUSIONS: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection.

6.
Front Pharmacol ; 13: 717271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370650

RESUMEN

Background: Acute lung injury (ALI) is a serious inflammatory disease with clinical manifestations of hypoxemia and respiratory failure. Presently, there is no effective treatment of ALI. Although emodin from Rheum palmatum L. exerts anti-ALI properties, the underlying mechanisms have not been fully explored. Purpose: This study aimed to investigate the therapeutic effect and mechanism of emodin on LPS-induced ALI in mice. Methods: RAW264.7 cells and zebrafish larvae were stimulated by LPS to establish inflammatory models. The anti-inflammatory effect of emodin was assessed by ELISA, flow cytometric analysis, and survival analysis. In vitro mechanisms were explored by using Western blotting, luciferase assay, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) approach. The acute lung injury model in mice was established by the intratracheal administration of LPS, and the underlying mechanisms were assessed by detecting changes in histopathological and inflammatory markers and Western blotting in lung tissues. Results: Emodin inhibited the inflammatory factor production and oxidative stress in RAW264.7 cells, and prolonged the survival of zebrafish larvae after LPS stimulation. Emodin suppressed the expression levels of phosphorylated JNK at Thr183/tyr182 and phosphorylated Nur77 at Ser351 and c-Jun, and increased the expression level of Nur77 in LPS-stimulated RAW264.7 cells, while these regulatory effects of emodin on Nur77/c-Jun were counteracted by JNK activators. The overexpression of JNK dampened the emodin-mediated increase in Nur77 luciferase activity and Nur77 expression. Moreover, the inhibitory effect of emodin on c-Jun can be attenuated by Nur77 siRNA. Furthermore, emodin alleviated LPS-induced ALI in mice through the regulation of the JNK/Nur77/c-Jun pathway. Conclusions: Emodin protects against LPS-induced ALI through regulation on JNK/Nur77/c-Jun signaling. Our results indicate the potential of emodin in the treatment of ALI.

7.
Food Funct ; 13(6): 3590-3602, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35262135

RESUMEN

Panax notoginseng has been used both as a traditional medicine and as a functional food for hundreds of years in Asia. However, the active constituents from P. notoginseng and their pharmacologic properties still need to be further explored. In this study, one new dammarane-type triterpenoid saponin (1), along with fourteen known analogs (2-15) were isolated and identified from the roots of P. notoginseng. The anti-inflammatory, anti-angiogenetic and anti-dengue virus effects of these isolated compounds were further evaluated. Compounds 1, 3, 5-7 and 10-12 exerted anti-inflammatory effects in two different zebrafish inflammatory models. Among them, 11, with the most significant activities, alleviated the inflammatory response by blocking the MyD88/NF-κB and STAT3 pathways. Moreover, compound 15 showed anti-angiogenetic activities in Tg(fli1:EGFP) and Tg(flk1:GFP) zebrafish, while 3 and 5 only inhibited angiogenesis in Tg(fli1:EGFP) zebrafish. Additionally, compounds 1, 3, 6, 8, 9 and 12 suppressed the replication of dengue virus either at the viral adsorption and entry stages or at the intracellular replication step. In conclusion, these findings enrich knowledge of the diversity of saponins in P. notoginseng and suggest that the dammarane-type triterpenoid saponins from P. notoginseng may be developed as potential functional foods to treat inflammation, angiogenesis or dengue-related diseases.


Asunto(s)
Panax notoginseng , Panax , Saponinas , Triterpenos , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antivirales/metabolismo , Antivirales/farmacología , Raíces de Plantas/metabolismo , Saponinas/metabolismo , Saponinas/farmacología , Pez Cebra , Damaranos
9.
J Ethnopharmacol ; 266: 113443, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33022344

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1ß-hydroxyl-arenobufagin (1ß-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1ß-OH-ABF have not been defined. AIM OF THE STUDY: To evaluate the anti-hepatoma activity of 1ß-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS: The anti-proliferative effects of 1ß-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1ß-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1ß-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1ß-OH-ABF in vivo. RESULTS: We found that 1ß-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1ß-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1ß-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1ß-OH-ABF-mediated apoptosis. Critically, 1ß-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION: 1ß-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1ß-OH-ABF may serve as a potential agent for the treatment of liver cancer.


Asunto(s)
Antineoplásicos/farmacología , Bufanólidos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Bufanólidos/química , Bufanólidos/aislamiento & purificación , Carcinoma Hepatocelular/patología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Mitocondrias/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
11.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987027

RESUMEN

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glicósidos/farmacología , MicroARNs/biosíntesis , Monocitos/efectos de los fármacos , Alveolos Pulmonares/citología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/biosíntesis , Relación Dosis-Respuesta a Droga , Glicósidos/uso terapéutico , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Alveolos Pulmonares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
12.
Front Pharmacol ; 11: 748, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536866

RESUMEN

BACKGROUND: Malignant melanoma is an extremely aggressive and metastatic cancer, and highly resistant to conventional therapies. Signal transducer and activator of transcription 3 (STAT3) signaling promotes melanoma development and progression, which has been validated as an effective target in melanoma treatment. Natural naphthoquinone shikonin is reported to exert anti-melanoma effects. However, the underlying mechanisms have not been fully elucidated. PURPOSE: This study aims to evaluate the anti-melanoma activities of shikonin and explore the involvement of STAT3 signaling in these effects. METHODS: Zebrafish tumor model was established to evaluate the anti-human melanoma effects of shikonin in vivo. MTT assay and colony formation assay were employed to investigate the anti-proliferative effects of shikonin on human melanoma A375 and A2058 cells. Flow cytometry was used to analyze cell cycle distribution and apoptosis induction. Wound healing assay and Transwell chamber assay were conducted to examine the cell migratory and invasive abilities. Immunofluorescence assay was used to observe F-actin, Tubulin, and STAT3 localization. Western blotting was used to determine the expression levels of proteins associated with apoptosis and key proteins in the STAT3 signaling pathway. Immunoblotting was performed in DSS cross-linked cells to determine the homo-dimerization of STAT3. Gelatin zymography was employed to evaluate the enzymatic activity of MMP-2 and MMP-9. Transient transfection was used to overexpress STAT3 in cell models. RESULTS: Shikonin suppressed melanoma growth in cultured cells and in zebrafish xenograft models. Shikonin induced melanoma cells apoptosis, inhibited cell migration and invasion. Mechanistic study indicated that shikonin inhibited the phosphorylation and homo-dimerization of STAT3, thus reduced its nuclear localization. Further study showed that shikonin decreased the levels of STAT3-targeted genes Mcl-1, Bcl-2, MMP-2, vimentin, and Twist, which are involved in melanoma survival, migration, and invasion. More importantly, overexpression of constitutively active STAT3 partially abolished the anti-proliferative, anti-migratory, and anti-invasive effects of shikonin. CONCLUSION: The anti-melanoma activity of shikonin is at least partially attributed to the inhibition on STAT3 signaling. These findings provide new insights into the anti-melanoma molecular mechanisms of shikonin, suggesting its potential in melanoma treatment.

13.
Chin J Integr Med ; 26(7): 552-559, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32240474

RESUMEN

Lipopolysaccharide (LPS)-induced inflammation causes massive threatening diseases, such as sepsis, acute lung injury and multiple organ dysfunction syndrome. Efficient treatment to prevent inflammation is crucial in LPS-induced inflammatory diseases. Heat-clearing Chinese medicines (CMs) have been used to ameliorate LPS-induced inflammation in China for centuries. Heat-clearing CMs regulate inflammatory pathways, thereby inhibiting the release of inflammatory factors. This review aimed to introduce promising heat-clearing CMs countering LPS-induced inflammation in the last 5 years, exploring the underlying molecular mechanisms.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Medicina Tradicional China/métodos , Animales , Temperatura Corporal , Calor , Humanos , Lipopolisacáridos
14.
Phytomedicine ; 61: 152843, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31039533

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown. PURPOSE: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms. METHODS: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo. RESULTS: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo. CONCLUSION: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Piperidinas/farmacología , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Embrión no Mamífero , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizidinas , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/embriología
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(9): 1211-1216, 2017 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-28951364

RESUMEN

OBJECTIVE: To investigate the inhibitory effect of giganteaside D (GD) on hepatocellular carcinoma and its molecular mechanisms. METHODS: The inhibitory effects of GD on Hep 3b cells were determined using MTT assay and colony formation assay. The morphological changes of Hep 3b cells after GD treatment were observed by electron microscopy, and the cell cycle changes was analyzed using flow cytometry. The cell apoptosis and mitochondrial potential collapse in the treated cells were tested with Hoechst staining assay and flow cytometry. The expression levels of Bcl-2, PARP and key proteins in MAPK pathway were detected using Western blotting. RESULTS: GD showed a significant inhibitory effect on Hep 3b cells with an IC50 value of 16.08 µmol/L at 72 h. Flow cytometric analysis demonstrated that the phases of cell cycle remained unchanged and a sub-G1 peak (from 3.3% to 33.6%) appeared as GD concentration increased. GD-induced apoptosis was further conformed by Hoechst staining assay, and flow cytometry showed increased mitochondrial potential collapse in the cells. Western blotting demonstrated the cleavage of PARP, decrease of Bcl-2 and p-Erk1/2 (Thr202/Tyr204), and activation of p-p38 (Thr180/Tyr182) and p-JNK (Thr183/Tyr185) in GD-treated cells. CONCLUSIONS: GD has significant inhibitory effect against hepatocellular carcinoma cells in vitro by inducing apoptosis possibly in association with the MAPK signaling pathway.

16.
Oncotarget ; 7(16): 21222-34, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27034013

RESUMEN

Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Colinérgicos/farmacología , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Medicina Tradicional China , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inflamación/inducido químicamente , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar
17.
Artículo en Inglés | MEDLINE | ID: mdl-25254052

RESUMEN

In this study, a rat model with acetic acid-induced PI-IBS was used to study the role of HXZQ oral liquid in repairing the colonic epithelial barrier and reducing intestinal permeability. Pathomorphism of colonic tissue, epithelial ultrastructure, DAO activity in serum, and the protein expression of ZO-1 and occludin were examined to investigate protective effect mechanisms of HXZQ on intestinal mucosa barrier and then present experimental support for its use for prevention and cure of PI-IBS.

18.
Molecules ; 19(2): 2390-409, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24566310

RESUMEN

Lipopolysaccharide (LPS), an endotoxin molecule, has been used to induce inflammatory responses. In this study, LPS was used to establish an in vivo inflammation model in zebrafish for drug screening. We present an experimental method that conveniently and rapidly assesses the anti-inflammatory properties of drugs. The yolks of 3-day post-fertilization (dpf) larvae were injected with 0.5 mg/mL LPS to induce fatal inflammation. After LPS stimulation, macrophages were tracked by NR and SB staining and neutrophil migration was observed using the MPO:GFP line. Larval mortality was used as the primary end-point. Expression levels of key cytokines involved in the inflammatory response including IL-1ß, IL-6, and TNF-α, were measured using quantitative reverse transcription polymerase chain reaction (RT-PCR). Macrophages and neutrophils were both recruited to the LPS-injected site during the inflammatory response. Mortality was increased by LPS in a dose-dependent manner within 48 h. Analyses of IL-1ß, IL-6, and TNF-α expression levels revealed the upregulation of the inflammatory response in the LPS-injected larvae. Further, the anti-inflammatory activity of chlorogenic acid (CA) was evaluated in this zebrafish model to screen for anti-inflammatory drugs. A preliminary result showed that CA revealed a similar effect as the corticosteroid dexamethasone (DEX), which was used as a positive control, by inhibiting macrophage and neutrophil recruitment to the LPS site and improving survival. Our results suggest that this zebrafish screening model could be applied to study inflammation-mediated diseases. Moreover, the Traditional Chinese Medicine CA displays potential anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/administración & dosificación , Evaluación Preclínica de Medicamentos , Inflamación/tratamiento farmacológico , Pez Cebra , Animales , Ácido Clorogénico/administración & dosificación , Modelos Animales de Enfermedad , Endotoxinas/toxicidad , Inflamación/inducido químicamente , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(1): 43-6, 2010 Jan.
Artículo en Chino | MEDLINE | ID: mdl-20117981

RESUMEN

OBJECTIVE: To investigate the effect of Lianggesan on the expression of signal transducer and activator of transcription 1 (STAT1) in rats with lipopolysaccharide (LPS)-induced acute lung injury and explore the possible mechanisms of the therapeutic effects. METHODS: Endotoxemia was induced in Wistar rats by intravenous injection of LPS (5 mg/kg). The rats were randomly divided into 6 groups, namely the control group, acute lung injury group (LPS group), 3 Lianggesan groups treated at different doses, and LPS+DEX treatment group. Each group, except for the control group, was further divided into 5 subgroups and examined at 1, 2, 4, 8 and 16 h after LPS injection. Western blotting was used to detect the protein expression of STAT1 and p-STAT1 in the lung tissue. RESULTS: In LPS group, the expression of STAT1 began to increase at 1 h following LPS injection, reaching the peak level at 4 h; the peak expression of p-STAT1 occurred at 2 h after LPS administration (P<0.01). Compared with LPS group, the 3 Lianggesan groups and DEX group showed significantly decreased expressions of STAT1 and p-STAT1 at 2, 4 and 8 h after LPS injection (P<0.05 or 0.01). CONCLUSION: Abnormal expression of STAT1 occurs in the lung tissue in the event of ALI. Lianggesan can relieve LPS-induced acute lung injury in rats by decreasing the expression of STAT1 and p-STAT1.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Medicamentos Herbarios Chinos/farmacología , Pulmón/metabolismo , Factor de Transcripción STAT1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Lipopolisacáridos , Distribución Aleatoria , Ratas , Ratas Wistar , Factor de Transcripción STAT1/genética
20.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 21(7): 387-9, 2009 Jul.
Artículo en Chino | MEDLINE | ID: mdl-19615126

RESUMEN

OBJECTIVE: To investigate the expression and regulatory effect of signal transducer and activator of transcription 1 (STAT1) in acute lung injury (ALI) induced by endotoxin. METHODS: ALI model was induced by intravenous lipopolysaccharide (LPS). Wistar rats were randomly divided into three groups, the control group, LPS group, dexamethasone (DEX) group. Each group was subdivided into five subgroups according to the time after administration of endotoxin (1, 2, 4, 8 and 16 hours), except the control group. Rats were given normal saline by gavage in control group and LPS group, and 0.135 mg/kg DEX in DEX group for 5 days. Six rats were sacrificed at different time points after normal saline or LPS injection. The lungs were harvested for microscopic examination. Western blotting was used to examine protein expression of STAT1 in lung tissue. RESULTS: In LPS group the levels of STAT1 began to increase at 1 hour, reaching the peak value at 4 hours, then declined gradually. There was a significant difference at 2, 4, 8 hours (all P<0.01). The expression trend for STAT1 was similar between DEX and LPS groups, but the levels of STAT1 were significantly decreased in DEX group at 2, 4, 8 hours compared with the LPS group (all P<0.05). CONCLUSION: There is abnormal expression of STAT1 in the lung tissue of ALI. The abnormal STAT1 expression takes part in the inflammatory formation of lung tissue in ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Factor de Transcripción STAT1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Dexametasona/farmacología , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Pulmón/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA