Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Talanta ; 280: 126781, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197311

RESUMEN

Macrocyclic compounds such as crown ethers and cyclodextrins play an important role in the field of chromatography and show excellent separation performance. The design of simple and convenient methods for the efficient synthesis of novel chiral macrocycles for chromatographic separation is of great significance. In this work, a novel chiral polyimine macrocycle (PIMC) was designed and synthesized by the simply one-step reaction of 2,6-diformyl-4-tert-butylphenol with (S)-(-)-1,2-propanediamine. Then, it was bonded onto silica by the thiol-ene click reaction to construct a new chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC). The chiral separation performance of the proposed CSP was examined by separating various racemates in the normal-phase (NP) and reversed-phase (RP) HPLC. In total, twelve and nine racemates, including ethers, esters, amines, alcohols, organic acids, ketones, and epoxides, were separated to varying degrees via NP-HPLC and RP-HPLC, respectively, Moreover, the CSP offered good chiral separation complementarity to Chiralcel OD-H and Chiralpak AD-H columns for resolution of these test racemates, and it can separate several racemic compounds that either cannot be separated or cannot be separated well be separated by the two commercially available columns. After the column was used for hundreds of injections, the relative standard deviations of the retention time and resolution were below 0.56 % and 0.45 %, respectively, showing the good reproducibility and stability of the CSP. This study provides a simple and convenient approach to synthesize a novel chiral macrocycle and CSP and also indicates the broad application prospects of such chiral PIMCs in HPLC chiral separation.

2.
Cell Biosci ; 14(1): 109, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210450

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is characterized by high mortality rate. Our study sought therapeutic candidates for GBC. RESULTS: Bioinformatics analysis identified significant upregulation of MST1R in GBC. In vitro experiments demonstrated that the MST1R inhibitor MGCD-265 effectively restrained GBC cell proliferation at lower concentrations. Additionally, it induced cycle arrest and apoptosis in GBC cells in a dose-dependent manner. Mouse models exhibited that MGCD-265 treatment significantly diminished the proliferative capacity of GBC-SD cells. Transcriptomics sequencing revealed significant transcriptome alterations, with 200 transcripts upregulated and 883 downregulated. KEGG and GO analyses highlighted enrichment in processes like cell adhesion and pathways such as protein digestion and absorption. Downstream genes analysis identified JMJD6 upregulation post-MGCD-265 treatment. In vivo experiments confirmed that combining MGCD-265 with the JMJD6 inhibitor SKLB325 enhanced the anticancer effect against GBC. CONCLUSION: Overall, targeting MST1R and its downstream genes, particularly combining MGCD-265 with SKLB325, holds promise as a therapeutic strategy for GBC.

3.
J Chromatogr A ; 1732: 465231, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39133951

RESUMEN

Macrocycles play vital roles in supramolecular chemistry and chromatography. 1,1'-Bi-2-naphthol (BINOL)-based chiral polyimine macrocycles are an emerging class of chiral macrocycles that can be constructed by one-step aldehyde-amine condensation of BINOL derivatives with other building blocks. These macrocycles exhibit good characteristics, such as facile preparation, rigid cyclic structures, multiple chiral centers, and defined molecular cavities, that make them good candidates as new chiral recognition materials for chromatographic enantioseparations. In this study, a BINOL-based [2+2] chiral polyimine macrocycle was synthesized by one-step condensation of enantiopure (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with (1R,2R)-1,2-diaminocyclohexane. The product was modified with 5-bromo-1-pentene and then attached to thiolated silica using click chemistry to construct a new chiral stationary phase (CSP). The enantioselectivity of the new CSP was explored by separating various racemates under normal phase (NP) and reversed phase (RP) high performance liquid chromatography (HPLC). Thirteen racemates and eight racemates were enantioseparated under the two separation modes, respectively, including chiral alcohols, phenols, esters, ketones, amines, and organic acids. Among them, nine racemates achieved baseline separation under NP-HPLC and seven racemates achieved baseline separation under RP-HPLC. High resolution separation was observed with benzoin (Rs = 5.10), epinephrine (Rs = 4.98), 3-benzyloxy-1,2-propanediol (Rs = 4.42), and 4,4'-dimethylbenzoin (Rs = 4.52) in NP-HPLC, and with 4-methylbenzhydrol (Rs = 4.72), benzoin ethyl ether (Rs = 3.79), 1-phenyl-1-pentanol (Rs = 3.68), and 1-(3-bromophenyl)ethanol (Rs = 3.60) in RP-HPLC. Interestingly, the CSP complemented Chiralcel OD-H, Chiralpak AD-H, and CYCLOBOND I 2000 RSP columns for resolution of these test racemates, separating several racemic compounds that could not be well separated by the three commercially available columns. The influences of injected sample amount on separation were also evaluated. It was found that the column exhibited excellent stability and reproducibility after hundreds of injections, and the relative standard deviations (n = 5) of the retention time and resolution were less than 0.49% and 0.69%, respectively. This study indicates that the BINOL-based chiral macrocycle has great potential for HPLC enantioseparation.


Asunto(s)
Compuestos Macrocíclicos , Naftoles , Dióxido de Silicio , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo , Naftoles/química , Naftoles/aislamiento & purificación , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/aislamiento & purificación , Dióxido de Silicio/química
4.
Sci Total Environ ; 946: 174248, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936724

RESUMEN

The present study aims to evaluate the effects of 2-ethylhexyldiphenyl phosphate (EHDPP) on glycolipid metabolism in vivo. Adult male zebrafish were exposed to various concentrations (0, 1, 10, 100 and 250 µg/L) of EHDPP for 28 days, and changes in lipid and glucose levels were measured. Results indicated significant liver damages in the 100 and 250 µg/L EHDPP groups, which both exhibited significant decreases in hepatic somatic index (HSI), elevated activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and liver, as well as hepatocyte vacuolation and nuclear pyknosis. Exposure to 100 and 250 µg/L EHDPP led to significant reductions in serum and liver cholesterol (TC), triglycerides (TGs), and lipid droplet deposition, indicating a significant inhibition of EHDPP on hepatic lipid accumulation. Lipidomic analyses manifested that 250 µg/L EHDPP reduced the levels of 103 lipid metabolites which belong to glycerides (TGs, diglycerides, and monoglycerides), fatty acyles (fatty acids), sterol lipids (cholesterol, bile acids), sphingolipids, and glycerophospholipids, and downregulated genes involved in de novo synthesis of fatty acids (fas, acc, srebp1, and dagt2), while upregulated genes involved in fatty acid ß-oxidation (pparα and cpt1). KEGG analyses revealed that EHDPP significantly disrupted glycerolipid metabolism, steroid biosynthesis and fatty acid biosynthesis pathways. Collectively, the results showed that EHDPP induced lipid reduction in zebrafish liver, possibly through inhibiting lipid synthesis and disrupting glycerolipid metabolism. Our findings provide a theoretical basis for evaluating the ecological hazards and health effects of EHDPP on glycolipid metabolism.


Asunto(s)
Glucolípidos , Metabolismo de los Lípidos , Lipidómica , Pez Cebra , Animales , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Glucolípidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Organofosfatos/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos
5.
Phytochem Anal ; 35(6): 1286-1293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38665054

RESUMEN

INTRODUCTION: Artemisia argyi Folium (AAF) is a traditional medicinal herb and edible plant. Analyzing the differential metabolites that affect the efficacy of AAF with different aging years is necessary. OBJECTIVE: The aim of the study was to investigate the changing trend and differential markers of volatile and nonvolatile metabolites of AAF from different aging years, which are necessary for application in clinical medicine. METHODOLOGY: Metabolites were analyzed using a widely targeted metabolomic approach based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS). RESULTS: A total of 153 volatile metabolites and 159 nonvolatile metabolites were identified. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish AAF aged for 1 year (AF-1), 3 years (AF-3), and 5 years (AF-5). Seven flavonoids and nine terpenoids were identified as biomarkers for tracking the aging years. CONCLUSIONS: The metabolomic method provided an effective strategy for tracking and identifying biomarkers of AAF from different aging years. This study laid the foundation for analysis of the biological activity of Artemisia argyi with different aging years.


Asunto(s)
Artemisia , Biomarcadores , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Compuestos Orgánicos Volátiles , Artemisia/química , Artemisia/metabolismo , Metabolómica/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Biomarcadores/análisis , Análisis de Componente Principal , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Flavonoides/análisis , Flavonoides/metabolismo , Terpenos/análisis , Terpenos/metabolismo , Análisis Discriminante
6.
Nat Prod Res ; : 1-5, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613231

RESUMEN

Camelina sativa (L.) Crantz is an oilseed plant common in Europe and Asia. This study used the gas chromatography-mass spectrometry (GC-MS) to examine the differences in the aroma on the basis of extraction method such as water distillation extraction (CSPW), Solid-phase microextraction (CSPM) and subcritical extraction (CSPS). Antibacterial test was evaluated by the microdilution method against Salmonella typhimurium, Streptococcus pneumoniae, Escherichia coli, Strepococcus pyogenens, Staphylococcus aureus, and antioxidant activity was determined through DPPH free radical, hydroxyl free radical, and superoxide anion radical scavenging capacity activity. The result revealed that three extraction methods were distinct from each other based on their volatile compounds. Sixty-one volatiles of diverse chemical nature were identified and quantified. The volatile components contain thioether, aldehydes, alcohols, ketones, acids, esters, alkene, alkanes, amide, and furan compounds. The volatile components of Camelina sativa (L.) Crantz have good antibacterial and antioxidant activities. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in plants and products.

7.
Front Microbiol ; 15: 1359263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591040

RESUMEN

In recent years, bacterial-based biocontrol agents (BCA) have become a new trend for the control of fungal diseases such as fusarium wilt that seriously threaten the yield and quality of cucumber, which are transmitted through infested soil and water. This study was set out with the aim of figuring the mechanism of the isolated rhizobacterial strain Paenibacillus polymyxa PJH16 in preventing Fusarium oxysporum f. sp. cucumerinum (Foc). Biocontrol and growth-promoting experiments revealed that bacterial strain causes effective inhibition of the fungal disease through a significant growth-promoting ability of plants, and had activities of ß-1,3-glucanase, cellulase, amylase and protease. It could produce siderophore and indole-3-acetic acid, too. Using the high-throughput sequencing tool PacBio Sequel II system and the database annotation, the bacterial strain was identified as P. polymyxa PJH16 and contained genes encoding for presence of biofilm formation, antimicrobial peptides, siderophores and hydrolyases. From comparing data between the whole genome of P. polymyxa PJH16 with four closely related P. polymyxa strains, findings revealed markedly the subtle differences in their genome sequences and proposed new antifungal substances present in P. polymyxa PJH16. Therefore, P. polymyxa PJH16 could be utilized in bioengineering a microbial formulation for application as biocontrol agent and bio-stimulant, in the future.

8.
Heliyon ; 10(1): e23654, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187340

RESUMEN

Objective: The aim of these studies was to ascertain if Camelina sativa oil is harmful in both the acute and subchronic states. Methods: Wistar rats of both sexes were used in an acute toxicity test, and the fatal dosage (LD50) of oral Camelina sativa oil was greater than 27.6 g/kg bw. Rats were gavaged with Camelina sativa oil at dosages of 0.00, 0.92, 1.84, and 3.68 g/kg bw per day for 90 days. In addition, satellite groups were established in the control and high-dose groups for a 28-day recovery period. The following factors were assessed: mortality, clinical anomalies, body weight, food intake, hematological, serum biochemistry, urine, gross necropsy, and histology. Results: There were no observable toxicity-related changes in any of the three dosage groups. There is no toxicological relevance to the change in the high-dose hematological indicator PLT at the conclusion of the recovery period because it was within the usual range for this strain in our laboratory. The test material did not result in any pathological alterations, according to a pathological examination. Conclusion: Since the results of the current study, the no-observed-adverse-effect-level (NOAEL) for Camelina sativa oil in rats has been determined to be greater than 3.68 g/kg bw.

9.
Aquat Toxicol ; 267: 106815, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185038

RESUMEN

2-ethylhexyl diphenyl phosphate (EHDPP) strongly binds to transthyretin (TTR) and affects the expression of genes involved in the thyroid hormone (TH) pathway in vitro. However, it is still unknown whether EHDPP induces endocrine disruption of THs in vivo. In this study, zebrafish (Danio rerio) embryos (< 2 h post-fertilization (hpf)) were exposed to environmentally relevant concentrations of EHDPP (0, 0.1, 1, 10, and 100 µg·L-1) for 120 h. EHDPP was detected in 120 hpf larvae at concentrations of 0.06, 0.15, 3.71, and 59.77 µg·g-1 dry weight in the 0.1, 1, 10, and 100 µg·L-1 exposure groups, respectively. Zebrafish development and growth were inhibited by EHDPP, as indicated by the increased malformation rate, decreased survival rate, and shortened body length. Exposure to lower concentrations of EHDPP (0.1 and 1 µg·L-1) significantly decreased the whole-body thyroxine (T4) and triiodothyronine (T3) levels and altered the expressions of genes and proteins involved in the hypothalamic-pituitary-thyroid axis. Downregulation of genes related to TH synthesis (nis and tg) and TH metabolism (dio1 and dio2) may be partially responsible for the decreased T4 and T3 levels, respectively. EHDPP exposure also significantly increased the transcription of genes involved in thyroid development (nkx2.1 and pax8), which may stimulate the growth of thyroid primordium to compensate for hypothyroidism. Moreover, EHDPP exposure significantly decreased the gene and protein expression of the transport protein transthyretin (TTR) in a concentration-dependent manner, suggesting a significant inhibitory effect of EHDPP on TTR. Molecular docking results showed that EHDPP and T4 partly share the same mode of action of binding to the TTR protein, which might result in decreased T4 transport due to the binding of EHDPP to the TTR protein. Taken together, our findings indicate that EHDPP can cause TH disruption in zebrafish and help elucidate the mechanisms underlying EHDPP toxicity.


Asunto(s)
Compuestos de Bifenilo , Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Glándula Tiroides , Pez Cebra/metabolismo , Prealbúmina/genética , Prealbúmina/metabolismo , Prealbúmina/farmacología , Bioacumulación , Larva , Fosfatos/metabolismo , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Hormonas Tiroideas/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/metabolismo
10.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067470

RESUMEN

In this study, a validated quality evaluation method with peony flower fingerprint chromatogram combined with simultaneous determination of sixteen bioactive constituents was established using UPLC-DAD-MS/MS. The results demonstrated that the method was stable, reliable, and accurate. The UPLC chemical fingerprints of 12 different varieties of peonies were established and comprehensively evaluated by similarity evaluation (SE), hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantification analysis. The results of SE indicated that similar chemical components were present in these samples regardless of variety, but there were significant differences in the content of chemical components and material basis characteristics. The results of HCA and PCA showed that 12 varieties of samples were divided into two groups. Four flavonoids (11, 12, 13, and 16), five monoterpenes and their glycosides (3, 4, 6, 14, and 15), three tannins (7, 9, and 10), three phenolic acids (1, 2, and 5), and one aromatic acid (8) were identified from sixteen common peaks by standards and liquid chromatography-mass spectrometry (LC-MS). The simultaneous quantification of six types of components was conducted with the 12 samples, it was found that the sum contents of analytes varied obviously for peony flower samples from different varieties. The content of flavonoids, tannins, and monoterpenes (≥19.34 mg/g) was the highest, accounting for more than 78.45% of the total compounds. The results showed that the flavonoids, tannins, and monoterpenes were considered to be the key indexes in the classification and quality assessment of peony flower. The UPLC-DAD-MS/MS method coupled with multiple compounds determination and fingerprint analysis can be effectively applied as a feature distinguishing method to evaluate the compounds in peony flower raw material for product quality assurance in the food, pharmaceutical, and cosmetic industries. Moreover, this study provides ideas for future research and the improvement of products by these industries.


Asunto(s)
Medicamentos Herbarios Chinos , Paeonia , Espectrometría de Masas en Tándem/métodos , Paeonia/química , Cromatografía Líquida de Alta Presión/métodos , Taninos/análisis , Medicamentos Herbarios Chinos/química , Flavonoides/química , Monoterpenos/análisis
11.
Aquat Toxicol ; 260: 106588, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267805

RESUMEN

Recently, several studies have reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) results in abnormal development of zebrafish embryos in blastocyst and gastrula stages, but molecular mechanisms are still not clear. This lacking strongly affects the interspecific extrapolation of embryonic toxicity induced by TDCIPP and hazard evaluation. In this study, zebrafish embryos were exposed to 100, 500 or 1000 µg/L TDCIPP, and 6-bromoindirubin-3'-oxime (BIO, 35.62 µg/L) was used as a positive control. Results demonstrated that treatment with TDCIPP or BIO caused an abnormal stacking of blastomere cells in mid blastula transition (MBT) stage, and subsequently resulted in epiboly delay of zebrafish embryos. TDCIPP and BIO up-regulated the expression of ß-catenin protein and increased its accumulation in nuclei of embryonic cells. This accumulation was considered as a driver for early embryonic developmental toxicity of TDCIPP. Furthermore, TDCIPP and BIO partly shared the same modes of action, and both of them could bind to Gsk-3ß protein, and then decreased the phosphorylation level of Gsk-3ß in TYR·216 site and lastly inhibited the activity of Gsk-3ß kinase, which was responsible for the increased concentrations of ß-catenin protein in embryonic cells and accumulation in nuclei. Our findings provide new mechanisms for clarifying the early embryonic developmental toxicity of TDCIPP in zebrafish.


Asunto(s)
Retardadores de Llama , Contaminantes Químicos del Agua , Animales , Fosfatos/metabolismo , Pez Cebra/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Compuestos Organofosforados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Desarrollo Embrionario , Retardadores de Llama/toxicidad , Cateninas/metabolismo
12.
Aquat Toxicol ; 260: 106585, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37247575

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is ubiquitous in aquatic environment, but its effect on intestinal health of fish has yet not been investigated. In the present study, the AB strain zebrafish embryos were exposed to environmentally realistic concentrations (0, 30, 300, and 3000 ng·L-1) of TDCIPP for 90 days, after which the fish growth and physiological activities were evaluated, and the intestinal microbes were analyzed by 16S rRNA gene high-throughput sequencing. Our results manifested that the body length and body weight were significantly reduced in the female zebrafish but not in males. Further analyses revealed that TDCIPP resulted in notable histological injury of intestine, which was accompanied by impairment of epithelial barrier integrity (decreased tight junction protein 2), inflammation responses (increased interleukin 1ß), and disruption of neurotransmission (increased serotonin) in female intestine. Male intestines maintained intact intestinal structure, and the remarkably increased activity of glutathione peroxidase (GPx) might protect the male zebrafish from inflammation and intestinal damage. Furthermore, 16S rRNA sequencing analysis showed that TDCIPP significantly altered the microbial communities in the intestine in a gender-specific manner, with a remarkable increase in alpha diversity of the gut microbiome in male zebrafish, which might be another mechanism for male fish to protect their intestines from damage by TDCIPP. Correlation analysis revealed that abnormal abundances of pathogenic bacteria (Chryseobacterium, Enterococcus, and Legionella) might be partially responsible for the impaired epithelial barrier integrity and inhibition in female zebrafish growth. Taken together, our study for the first time demonstrates the high susceptibility of intestinal health and gut microbiota of zebrafish to TDCIPP, especially for female zebrafish, which could be partially responsible for the female-biased growth inhibition.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Fosfatos/metabolismo , Pez Cebra/metabolismo , Compuestos Organofosforados/metabolismo , Disbiosis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Contaminantes Químicos del Agua/toxicidad , Inflamación
13.
Front Nutr ; 10: 1139006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908905

RESUMEN

Objectives: We investigated the protective effect of Rehmannia glutinosa oligosaccharides (RGO) on lipopolysaccharide (LPS)-induced intestinal inflammation and barrier injury among mice. Methods: RGO is prepared from fresh rehmannia glutinosa by water extraction, active carbon decolorization, ion exchange resin impurity removal, macroporous adsorption resin purification, and decompression drying. LPS could establish the model for intestinal inflammation and barrier injury in mice. Three different doses of RGO were administered for three consecutive weeks. Then the weight, feces, and health status of the mice were recorded. After sacrificing the mice, their colon length and immune organ index were determined. The morphological changes of the ileum and colon were observed using Hematoxylin-eosin (H&E) staining, followed by measuring the villus length and recess depth. RT-qPCR was utilized to detect the relative mRNA expression of intestinal zonula occludens-1 (ZO-1) and occludin. The expression of inflammatory factors and oxidation markers within ileum and colon tissues and the digestive enzyme activities in the ileum contents were detected using ELISA. The content of short-chain fatty acids (SCFAs) in the colon was determined with GC. The gut microbial composition and diversity changes were determined with 16S-rRNA high-throughput sequencing. The association between intestinal microorganisms and SCFAs, occludins, digestive enzymes, inflammatory factor contents, and antioxidant indexes was also analyzed. Results: RGO significantly increased the weight, pancreatic index, thymus index, and colon length of mice compared with the model group. Moreover, it also improved the intestinal tissue structure and increased the expression of intestinal barrier-related junction proteins ZO-1 and Occludin. The contents of IL-6, IL-17, IL-1ß, and TNF-α in the intestinal tissues of mice were significantly reduced. Additionally, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were elevated. In contrast, the malondialdehyde (MDA) content decreased. Trypsin and pancreatic lipase activities in the ileum enhanced, and the SCFA contents such as acetic acid, propionic acid, and butyric acid in the colon increased. The study on intestinal flora revealed that RGO could enhance the abundance of intestinal flora and improve the flora structure. After RGO intervention, the relative abundance of Firmicutes, Lactobacillus, and Akkermania bacteria in the intestinal tract of mice increased compared with the model group, while that of Actinomycetes decreased. The intestinal microbiota structure changed to the case, with probiotics playing a dominant role. The correlation analysis indicated that Lactobacillus and Ackermann bacteria in the intestinal tract of mice were positively associated with SCFAs, Occludin, ZO-1, pancreatic amylase, SOD, and CAT activities. Moreover, they were negatively correlated with inflammatory factors IL-6, IL-17, IL-1ß, and TNF-α. Conclusions: RGO can decrease LPS-induced intestinal inflammation and intestinal barrier injury in mice and protect their intestinal function. RGO can ameliorate intestinal inflammation and maintain the intestinal barrier by regulating intestinal flora.

14.
Nat Prod Res ; 37(11): 1888-1891, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36089913

RESUMEN

Camelina [Camelina sativa (L.) Crantz] seed has long been consumed as a source of food in Canada. But limited information is available concerning the systematical evaluation of the composition, content, and antioxidant activity of Camelina seed polyphenol extract (CSPE). Therefore, the aim of this study was to identify, quantify and evaluate the antioxidant activity of CSPE. The result showed that eight compositions were identified and determined by the UPLC-DAD-ESI-MS2 analysis. CSPE has potent free radical scavenging capacity. CSPE treatment significantly increased the activities of the antioxidant enzymes (superoxide dismutase and catalase) and glutathione content in a dose-dependent manner in RAW264.7 cells with oxidative injury and also reduced malondialdehyde content (P < 0.01). It may be concluded that CSPE has a strong antioxidant activity as depicted by the in vitro experiments and thus possesses the potential to be developed as food antioxidants or as an ingredient in functional foods.


Asunto(s)
Antioxidantes , Polifenoles , Antioxidantes/farmacología , Antioxidantes/análisis , Polifenoles/farmacología , Polifenoles/análisis , Extractos Vegetales/farmacología , Semillas/química , Superóxido Dismutasa
15.
Front Microbiol ; 13: 950677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274694

RESUMEN

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play an important role in nitrification, which is essential in the global nitrogen cycle. However, their dynamics and the underlying community processes in agricultural ecosystems under disturbance remain largely unknown. In this study we examined the spatiotemporal dynamics of AOA and AOB communities and analyzed their community processes in the sediment of aquaculture ponds across three different areas in China. We found some significant temporal changes in AOA and AOB community diversity and abundances, but no temporal changes in community composition, despite the significant variations in sediment properties between different sampling times. Nevertheless, significant differences were found for AOA and AOB communities between different areas. Distinct area-specific taxa were detected, and they were found to be important in determining the response of AOA and AOB communities to environmental factors. In addition, geographic distance was found to be significantly correlated with AOA and AOB community composition, which demonstrates that dispersal limitation could significantly contribute to the variations in AOA and AOB communities, and stochastic processes were found to be important in structuring AOA/AOB communities in aquaculture ponds. Taken together, our study indicates that the dynamics of AOA and AOB are based on their community characteristics in aquaculture pond sediment. Our results, for the first time, provide evidence for the dynamics of AOA and AOB communities being driven by stochastic factors in a disturbed environment, and might also be of use in the management of the aquaculture environment.

16.
Aquat Toxicol ; 252: 106313, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182864

RESUMEN

Microcystin-LR (MC-LR) is a kind of natural toxin which exists widely in aquatic environments and has been reported to be hepatotoxic and carcinogenic. At present, the promoting mechanism of MC-LR on hepatocellular carcinoma (HCC) remains largely unexplored. In this study, the hepatocellular promoting effect of MC-LR was described in KrasV12 transgenic zebrafish, a doxycycline (DOX) inducible HCC model. Our results showed that MC-LR could aggravate the progression of HCC at an environmentally relevant concentration (3 µg/L), which was accompanied by the decreased activity and down-regulated transcription level of serine/threonine phosphatase 2A (PP2A). Using TMT labeling quantitative phosphoproteomics, we found that the 1049 phosphopeptides were significantly changed (508 up-regulated and 541 down-regulated) in liver from combined exposure to DOX and 3 µg/L MC-LR group compared to the DOX group. Enriched pathways by KEGG analysis suggested that differentially phosphorylated proteins were mainly related to Wnt signaling pathway. Furthermore, the mRNA expression and protein abundance of ß-Catenin in Wnt signaling pathway were significantly up-regulated following exposure to MC-LR. In short, our results suggested that MC-LR significantly inhibited the activity of PP2A, which in turn activated Wnt signaling, eventually resulting in progression of liver tumor in transgenic zebrafish.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Contaminantes Químicos del Agua , Animales , Femenino , Pez Cebra/genética , Pez Cebra/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Doxiciclina , Fosfopéptidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Animales Modificados Genéticamente , Serina , ARN Mensajero
17.
Lupus Sci Med ; 9(1)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36041813

RESUMEN

OBJECTIVE: To evaluate the risk of major infections and the relationship between major infections and mortality in patients with newly diagnosed SLE. METHODS: A newly diagnosed (<3 months) hospitalised Systemic Lupus Inception Cohort (hSLIC) in our centre during 1 January 2013 and 1 November 2020 was established. All patients were followed up for at least 1 year or until death. Patient baseline characteristics were collected. Major infection events were recorded during follow-up, which were defined as microbiological/clinical-based diagnosis treated with intravenous antimicrobials. The cohort was further divided into a training set and a testing set. Independent predictors of major infections were identified using multivariable logistic regression analysis. Kaplan-Meier survival analyses were conducted. RESULTS: Among the 494 patients enrolled in the hSLIC cohort, there were 69 documented episodes of major infections during the first year of follow-up in 67 (14%) patients. The major infection events predominantly occurred within the first 4 months since enrolment (94%, 65/69) and were associated with all-cause mortality. After adjustments for glucocorticoid and immunosuppressant exposure, a prediction model based on SLE Disease Activity Index >10, peripheral lymphocyte count <0.8×109/L and serum creatinine >104 µmol/L was established to identify patients at low risk (3%-5%) or high risk (37%-39%) of major infections within the first 4 months. CONCLUSIONS: Newly onset active SLE is susceptible to major infections, which is probably due to underlying profound immune disturbance. Identifying high-risk patients using an appropriate prediction tool might lead to better tailored management and better outcome.


Asunto(s)
Lupus Eritematoso Sistémico , Estudios de Cohortes , Humanos , Inmunosupresores/efectos adversos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico
18.
Environ Sci Pollut Res Int ; 29(58): 87717-87729, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35819675

RESUMEN

In this study, we exposed duckweed (Lemna minor), a floating freshwater plant, to BPA at different concentrations (0, 1, 5, 20, and 50 mg/L) for 7 days so as to investigate the effects of BPA on its growth, photosynthesis, antioxidant system, and osmotic substances. It was found that BPA had the acute toxic effects of "low promotion and high inhibition" on growth and photosynthesis. Specifically, BPA at a low concentration (5 mg/L) significantly promoted the plant growth and improved the concentration of photosynthetic pigments (chlorophyll a, b, and total Chl ) of L. minor. However, BPA at a high concentration (50 mg/L) significantly inhibited the plant growth, the Chl content, and the maximal photochemical efficiency (Fv/Fm). Furthermore, BPA with high concentration (50 mg/L) induced ROS accumulation and increased the activities of antioxidant enzymes (SOD, CAT, POD, APX, and GR) and the contents of antioxidant substances (GSH, proline, and T-AOC), which indicated that L. minor might tolerate BPA toxicity by activating an antioxidant defense system. The correlation analysis revealed that the fresh weight of L. minor was significantly and positively correlated with photosynthesis and the contents of soluble protein and sugar, while it was negatively correlated with the content of H2O2. Totally, these results showed that BPA at different concentrations had dualistic effects on the growth of L. minor, which was attributed to the alterations of photosynthesis, oxidative stress, and osmotic regulation systems and provided a novel insight for studying the effects of BPA on aquatic plant physiology.


Asunto(s)
Antioxidantes , Araceae , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Clorofila A/metabolismo , Fotosíntesis , Estrés Oxidativo , Clorofila/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-35178105

RESUMEN

Diarrhea, occurring due to intestinal flora disturbance, is potentially lethal, and its current treatments have adverse effects such as constipation and vomiting. Camelina sativa oil (CSO) is a cooking ingredient and natural remedy used in several countries; however, its pharmacological effects on intestinal health remain unknown. Here, we explored the CSO treatment effects on intestinal flora in male ICR mice with castor oil-induced diarrhea. The rate and degree of loose stools, the diarrhea index, serum inflammatory indices, fecal short-chain fatty acids (SCFAs), and the diversity and abundance of intestinal flora were measured. Castor oil-administered mice experienced diarrhea, reduced intestinal flora diversity and fecal SCFAs concentrations, altered intestinal flora composition, and increased serum proinflammatory indices. In contrast, CSO treatment relieved diarrhea, improved intestinal flora composition, and increased the relative abundance of Lactobacillus and Lachnospiraceae. Additionally, CSO significantly increased the concentrations of fecal propionic acid, valeric acid, isovaleric acid, and serum sIgA, while it reduced those of serum interleukin-17. These findings suggest that CSO could be a promising preventive agent against diarrhea.

20.
Chemosphere ; 287(Pt 3): 132161, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34562708

RESUMEN

This study explored the combined effects of titanium dioxide nanoparticles (nano-TiO2) and triphenyl phosphate (TPhP) on the neurodevelopment of zebrafish larvae as well as the underlying mechanisms. With this regard, zebrafish embryos were exposed to nano-TiO2 of 100 µg·L-1, TPhP of 0, 8, 24, 72, and 144 µg·L-1, or their combinations until 120 h post-fertilization (hpf). Results indicated 100 µg·L-1 nano-TiO2 alone to be nontoxic to zebrafish larvae. However, obvious developmental toxicity manifested as inhibition of surviving rate, heart rate and body length as well as increased malformation was observed in the higher concentrations of TPhP (72 and 144 µg·L-1) alone and the co-exposure groups. Additionally, results suggested that nano-TiO2 significantly enhanced the bioaccumulation of TPhP in zebtafish larvae, and thus aggravated the abnormities of spontaneous movement and swimming behavior in zebrafish larvae induced by TPhP. Nano-TiO2 also exacerbated the TPhP-induced inhibition of the axonal growth on the secondary motor neuron, and aggravated the TPhP-induced decrease on expressions of neuron-specific green fluorescent protein (GFP) and neuronal marker genes (ngn1 and elavl3). Further, the content of neurotransmitter serotonin was not altered by TPhP alone exposure, but was decreased significantly in the co-exposure group of 144 µg·L-1 TPhP and nano-TiO2. Our data indicated that nano-TiO2 might aggravate the neuron abnormities and serotonin system dysfunction by enhancing the TPhP accumulation, leading to exacerbated abnormal locomotors in zebrafish larvae.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Bioacumulación , Larva , Organofosfatos , Titanio , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...