Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Elife ; 112022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317867

RESUMEN

Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.


Asunto(s)
Aprendizaje Basado en Problemas , Aprendizaje Inverso , Humanos , Encéfalo/fisiología , Condicionamiento Clásico , Dolor , Imagen por Resonancia Magnética , Mapeo Encefálico
2.
Pain Rep ; 4(4): e752, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579848

RESUMEN

Since early work attempting to characterize the brain's role in pain, it has been clear that pain is not generated by a specific brain region, but rather by coordinated activity across a network of brain regions, the "neuromatrix." The advent of noninvasive whole-brain neuroimaging, including functional magnetic resonance imaging, has provided insight on coordinated activity in the pain neuromatrix and how correlations in activity between regions, referred to as "functional connectivity," contribute to pain and its modulation. Initial functional connectivity investigations assumed interregion connectivity remained stable over time, and measured variability across individuals. However, new dynamic functional connectivity (dFC) methods allow researchers to measure how connectivity changes over time within individuals, permitting insights on the dynamic reorganization of the pain neuromatrix in humans. We review how dFC methods have been applied to pain, and insights afforded on how brain connectivity varies across time, either spontaneously or as a function of psychological states, cognitive demands, or the external environment. Specifically, we review psychophysiological interaction, dynamic causal modeling, state-based dynamic community structure, and sliding-window analyses and their use in human functional neuroimaging of acute pain, chronic pain, and pain modulation. We also discuss promising uses of dFC analyses for the investigation of chronic pain conditions and predicting pain treatment efficacy and the relationship between state- and trait-based pain measures. Throughout this review, we provide information regarding the advantages and shortcomings of each approach, and highlight potential future applications of these methodologies for better understanding the brain processes associated with pain.

3.
J Neurosci Methods ; 320: 64-71, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30902651

RESUMEN

It has been widely shown that genomic factors influence both risk for schizophrenia and variation in functional brain connectivity. Moreover, schizophrenia is characterized by disrupted brain connectivity. In this work, we proposed a genome-connectome bipartite graph model to perform imaging genomic analysis. Functional network connectivity (FNC) was estimated after decomposing resting state functional magnetic resonance imaging data from both healthy controls (HC) and patients with schizophrenia (SZ) into spatial brain components using group independent component analysis (G-ICA). Then 83 FNC connections showing a group difference (HC vs SZ) were selected as fMRI nodes, and eighty-one schizophrenia-related single nucleotide polymorphisms (SNPs) were selected as genetic nodes respectively in the bipartite graph. Edges connecting pairs of genetic and fMRI nodes were defined based on the SNP-FNC associations across subjects evaluated by a general linear model. Results show that some SNP nodes in the bipartite graph have a high degree implying they are influential in modulating brain connectivity and may be more strongly associated with the risk of schizophrenia than other SNPs. A bi-clustering analysis detected a cluster with 15 SNPs interacting with 38 FNC connections, most of which were within or between somato-motor and visual brain areas. This suggests that the activity of these brain regions may be related to common SNPs and provides insights into the pathology of schizophrenia. The findings suggest that the SNP-FNC bipartite graph approach is a novel model to investigate genetic influences on functional brain connectivity in mental illness.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiopatología , Conectoma , Genoma Humano , Modelos Biológicos , Neurociencias/métodos , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Esquizofrenia/diagnóstico por imagen , Adulto Joven
4.
Schizophr Bull ; 45(2): 436-449, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897555

RESUMEN

Multimodal fusion has been regarded as a promising tool to discover covarying patterns of multiple imaging types impaired in brain diseases, such as schizophrenia (SZ). In this article, we aim to investigate the covarying abnormalities underlying SZ in a large Chinese Han population (307 SZs, 298 healthy controls [HCs]). Four types of magnetic resonance imaging (MRI) features, including regional homogeneity (ReHo) from resting-state functional MRI, gray matter volume (GM) from structural MRI, fractional anisotropy (FA) from diffusion MRI, and functional network connectivity (FNC) resulted from group independent component analysis, were jointly analyzed by a data-driven multivariate fusion method. Results suggest that a widely distributed network disruption appears in SZ patients, with synchronous changes in both functional and structural regions, especially the basal ganglia network, salience network (SAN), and the frontoparietal network. Such a multimodal coalteration was also replicated in another independent Chinese sample (40 SZs, 66 HCs). Our results on auditory verbal hallucination (AVH) also provide evidence for the hypothesis that prefrontal hypoactivation and temporal hyperactivation in SZ may lead to failure of executive control and inhibition, which is relevant to AVH. In addition, impaired working memory performance was found associated with GM reduction and FA decrease in SZ in prefrontal and superior temporal area, in both discovery and replication datasets. In summary, by leveraging multiple imaging and clinical information into one framework to observe brain in multiple views, we can integrate multiple inferences about SZ from large-scale population and offer unique perspectives regarding the missing links between the brain function and structure that may not be achieved by separate unimodal analyses.


Asunto(s)
Ganglios Basales , Disfunción Cognitiva , Alucinaciones , Red Nerviosa , Neuroimagen/métodos , Esquizofrenia , Adulto , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Ganglios Basales/fisiopatología , China , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Conectoma/métodos , Femenino , Alucinaciones/diagnóstico por imagen , Alucinaciones/etiología , Alucinaciones/patología , Alucinaciones/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Adulto Joven
5.
Compr Psychiatry ; 89: 16-21, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576960

RESUMEN

BACKGROUND: The human brain presents ongoing temporal fluctuations whose dynamic range indicates the capacity of information processing and can be approximately quantified with entropy. Using functional magnetic resonance imaging (fMRI), recent studies have shown a stable distribution pattern of temporal brain entropy (tBEN) in healthy subjects, which may be affected by neuropsychiatric diseases such as schizophrenia. Assessing tBEN may reciprocally provide a new tool to characterize those disorders. METHODS: The current study aimed to identify tBEN changes in schizophrenia patients using publicly available data from the Centers of Biomedical Research Excellence (COBRE) project. Forty-three schizophrenia patients and 59 sex- and age-matched healthy control subjects were included, and tBEN was calculated from their resting-state fMRI scans. RESULTS: Compared with healthy controls, patients showed decreased tBEN in the right middle prefrontal cortex, bilateral thalamus, right hippocampus and bilateral caudate and increased tBEN in the left lingual gyrus, left precuneus, right fusiform face area and right superior occipital gyrus. In schizophrenia patients, tBEN in the left cuneus and middle occipital gyrus was negatively correlated with the positive and negative syndrome scores (PANSS). Age of onset was inversely correlated with tBEN in the right fusiform gyrus and left insula. CONCLUSION: Our findings demonstrate a detrimental tBEN reduction in schizophrenia that is related to clinical characteristics. The tBEN increase in a few regions might be a result of tBEN redistribution across the whole brain in schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Entropía , Descanso/fisiología , Esquizofrenia/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Adulto Joven
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 558-561, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440458

RESUMEN

Major depressive disorder (MDD) is a complex mood disorder characterized by persistent and overwhelming depression. Previous studies have identified abnormalities in large scale functional brain networks in MDD, yet most of them were based on static functional connectivity. By contrast, here we explored disrupted topological organization of dynamic functional network connectivity (dFNC) in MDD based on graph theory. 182 MDD patients and 218 healthy controls were included in this study, all Chinese Han people. By applying group information guided independent component analysis (GIG-ICA) on resting-state fMRI data, the dFNCs of each subject were estimated using a sliding window method and k-means clustering. Five dynamic functional states were identified, three of which demonstrated significant group difference on the percentage of state occurrence. Interestingly, MDD patients spent much more time in a weakly-connected state 2, which is associated with self-focused thinking, a representative feature of depression. In addition, the abnormal FNCs in MDD were observed connecting different networks, especially among prefrontal, sensorimotor and cerebellum networks. As to network properties, MDD patients exhibited increased node efficiency in prefrontal and cerebellum. Moreover, three dFNCs with disrupted node properties were commonly identified in different states, which are also correlated with depressive symptom severity and cognitive performance. This study is the first attempt to investigate the dynamic functional abnormalities in Chinese MDD using a relatively large sample size, which provides new evidence on aberrant time-varying brain activity and its network disruptions in MDD, which might underscore the impaired cognitive functions in this mental disorder.


Asunto(s)
Cognición , Trastorno Depresivo Mayor/fisiopatología , Vías Nerviosas/fisiopatología , Encéfalo/fisiopatología , Mapeo Encefálico , Estudios de Casos y Controles , Cerebelo/fisiopatología , Humanos , Imagen por Resonancia Magnética
7.
Proc IEEE Inst Electr Electron Eng ; 106(5): 886-906, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30364630

RESUMEN

Human brain connectivity is complex. Graph theory based analysis has become a powerful and popular approach for analyzing brain imaging data, largely because of its potential to quantitatively illuminate the networks, the static architecture in structure and function, the organization of dynamic behavior over time, and disease related brain changes. The first step in creating brain graphs is to define the nodes and edges connecting them. We review a number of approaches for defining brain nodes including fixed versus data-driven nodes. Expanding the narrow view of most studies which focus on static and/or single modality brain connectivity, we also survey advanced approaches and their performances in building dynamic and multi-modal brain graphs. We show results from both simulated and real data from healthy controls and patients with mental illnesse. We outline the advantages and challenges of these various techniques. By summarizing and inspecting recent studies which analyzed brain imaging data based on graph theory, this article provides a guide for developing new powerful tools to explore complex brain networks.

8.
Front Psychiatry ; 9: 339, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108526

RESUMEN

Major depressive disorder (MDD) is a complex mood disorder characterized by persistent and overwhelming depression. Previous studies have identified abnormalities in large scale functional brain networks in MDD, yet most of them were based on static functional connectivity. In contrast, here we explored disrupted topological organization of dynamic functional network connectivity (dFNC) in MDD based on graph theory. One hundred and eighty-two MDD patients and 218 healthy controls were included in this study, all Chinese Han people. By applying group information guided independent component analysis (GIG-ICA) to resting-state functional magnetic resonance imaging (fMRI) data, the dFNCs of each subject were estimated using a sliding window method and k-means clustering. Network properties including global efficiency, local efficiency, node strength and harmonic centrality, were calculated for each subject. Five dynamic functional states were identified, three of which demonstrated significant group differences in their percentage of state occurrence. Interestingly, MDD patients spent much more time in a weakly-connected State 2, which includes regions previously associated with self-focused thinking, a representative feature of depression. In addition, the FNCs in MDD were connected differently in different states, especially among prefrontal, sensorimotor, and cerebellum networks. MDD patients exhibited significantly reduced harmonic centrality primarily involving parietal lobule, lingual gyrus and thalamus. Moreover, three dFNCs with disrupted node properties were commonly identified in different states, and also correlated with depressive symptom severity and cognitive performance. This study is the first attempt to investigate the dynamic functional abnormalities in MDD in a Chinese population using a relatively large sample size, which provides new evidence on aberrant time-varying brain activity and its network disruptions in MDD, which might underscore the impaired cognitive functions in this mental disorder.

9.
Front Neurosci ; 12: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545739

RESUMEN

Imaging genetics posits a valuable strategy for elucidating genetic influences on brain abnormalities in psychiatric disorders. However, association analysis between 2D genetic data (subject × genetic variable) and 3D first-level functional magnetic resonance imaging (fMRI) data (subject × voxel × time) has been challenging given the asymmetry in data dimension. A summary feature needs to be derived for the imaging modality to compute inter-modality association at subject level. In this work, we propose to use variability in resting state networks (RSNs) and functional network connectivity (FNC) as potential features for purpose of association analysis. We conducted a pilot study to investigate the proposed features in a dataset of 171 healthy controls and 134 patients with schizophrenia (SZ). We computed variability in RSN and FNC in a group independent component analysis framework and tested three types of variability metrics, namely Euclidean distance, Pearson correlation and Kullback-Leibler (KL) divergence. Euclidean distance and Pearson correlation metrics more effectively discriminated controls from patients than KL divergence. The group differences observed with variability in RSN and FNC were highly consistent, indicating patients presenting increased deviation from the cohort-common pattern of RSN and FNC than controls. The variability in RSN and FNC showed significant associations with network global efficiency, the more the deviation, the lower the efficiency. Furthermore, the RSN and FNC variability were found to associate with individual SZ risk SNPs as well as cumulative polygenic risk score for SZ. Collectively the current findings provide preliminary evidence for variability in RSN and FNC being promising imaging features that may find applications as biomarkers and in imaging genetic association analysis.

10.
J Neurosci Methods ; 303: 146-158, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601886

RESUMEN

BACKGROUND: Functional magnetic resonance imaging (fMRI) allows for the measurement of functional connectivity of the brain. In this context, graph theory has revealed distinctive non-random connectivity patterns. However, the application of graph theory to fMRI often utilizes non-linear transformations (absolute value) to extract edge representations. NEW METHOD: In contrast, this work proposes a mathematical framework for the analysis of randomness directly from functional connectivity assessments. The framework applies random matrix theory to the analysis of functional connectivity matrices (FCMs). The developed randomness measure includes its probability density function and statistical testing method. RESULTS: The utilized data comes from a previous study including 603 healthy individuals. Results demonstrate the application of the proposed method, confirming that whole brain FCMs are not random matrices. On the other hand, several FCM submatrices did not significantly test out of randomness. COMPARISON WITH EXISTING METHODS: The proposed method does not replace graph theory measures; instead, it assesses a different aspect of functional connectivity. Features not included in graph theory are small numbers of nodes, testing submatrices of an FCM and handling negative as well as positive edge values. CONCLUSION: The random test not only determines randomness, but also serves as an indicator of smaller non-random patterns within a non-random FCM. Outcomes suggest that a lower order model may be sufficient as a broad description of the data, but it also indicates a loss of information. The developed randomness measure assesses a different aspect of randomness from that of graph theory.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Red Nerviosa/diagnóstico por imagen , Adolescente , Adulto , Anciano , Encéfalo/fisiología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Adulto Joven
11.
Neuropsychopharmacology ; 43(5): 1078-1087, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28758644

RESUMEN

Owing to the rapid and robust clinical effects, electroconvulsive therapy (ECT) represents an optimal model to develop and test treatment predictors for major depressive disorders (MDDs), whereas imaging markers can be informative in identifying MDD patients who will respond to a specific antidepressant treatment or not. Here we aim to predict post-ECT depressive rating changes and remission status using pre-ECT gray matter (GM) in 38 MDD patients and validate in two independent data sets. Six GM regions including the right hippocampus/parahippocampus, right orbitofrontal gyrus, right inferior temporal gyrus (ITG), left postcentral gyrus/precuneus, left supplementary motor area, and left lingual gyrus were identified as predictors of ECT response, achieving accuracy of 89, 90 and 86% for remission prediction in three independent, age-matched data sets, respectively. For MDD patients, GM density increases only in the left supplementary motor cortex and left postcentral gyrus/precuneus after ECT. These results suggest that treatment-predictive and treatment-responsive regions may be anatomically different but functionally related in the context of ECT response. To the best of our knowledge, this is the first attempt to quantitatively identify and validate the ECT treatment biomarkers using multi-site GM data. We address a major clinical challenge and provide potential opportunities for more effective and timely interventions for electroconvulsive treatment.


Asunto(s)
Conjuntos de Datos como Asunto , Trastorno Depresivo Mayor/diagnóstico por imagen , Terapia Electroconvulsiva , Sustancia Gris/diagnóstico por imagen , Hipertrofia/diagnóstico por imagen , Valor Predictivo de las Pruebas , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Resultado del Tratamiento
12.
Neuroimage Clin ; 17: 335-346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29159045

RESUMEN

Although individuals at clinical high risk (CHR) for psychosis exhibit a psychosis-risk syndrome involving attenuated forms of the positive symptoms typical of schizophrenia (SZ), it remains unclear whether their resting-state brain intrinsic functional networks (INs) show attenuated or qualitatively distinct patterns of functional dysconnectivity relative to SZ patients. Based on resting-state functional magnetic imaging data from 70 healthy controls (HCs), 53 CHR individuals (among which 41 subjects were antipsychotic medication-naive), and 58 early illness SZ (ESZ) patients (among which 53 patients took antipsychotic medication) within five years of illness onset, we estimated subject-specific INs using a novel group information guided independent component analysis (GIG-ICA) and investigated group differences in INs. We found that when compared to HCs, both CHR and ESZ groups showed significant differences, primarily in default mode, salience, auditory-related, visuospatial, sensory-motor, and parietal INs. Our findings suggest that widespread INs were diversely impacted. More than 25% of voxels in the identified significant discriminative regions (obtained using all 19 possible changing patterns excepting the no-difference pattern) from six of the 15 interrogated INs exhibited monotonically decreasing Z-scores (in INs) from the HC to CHR to ESZ, and the related regions included the left lingual gyrus of two vision-related networks, the right postcentral cortex of the visuospatial network, the left thalamus region of the salience network, the left calcarine region of the fronto-occipital network and fronto-parieto-occipital network. Compared to HCs and CHR individuals, ESZ patients showed both increasing and decreasing connectivity, mainly hypo-connectivity involving 15% of the altered voxels from four INs. The left supplementary motor area from the sensory-motor network and the right inferior occipital gyrus in the vision-related network showed a common abnormality in CHR and ESZ groups. Some brain regions also showed a CHR-unique alteration (primarily the CHR-increasing connectivity). In summary, CHR individuals generally showed intermediate connectivity between HCs and ESZ patients across multiple INs, suggesting that some dysconnectivity patterns evident in ESZ predate psychosis in attenuated form during the psychosis risk stage. Hence, these connectivity measures may serve as possible biomarkers to predict schizophrenia progression.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Antipsicóticos/uso terapéutico , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Trastornos Psicóticos/diagnóstico por imagen , Factores de Riesgo , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Adulto Joven
13.
IEEE Trans Med Imaging ; 37(1): 93-105, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28708547

RESUMEN

By exploiting cross-information among multiple imaging data, multimodal fusion has often been used to better understand brain diseases. However, most current fusion approaches are blind, without adopting any prior information. There is increasing interest to uncover the neurocognitive mapping of specific clinical measurements on enriched brain imaging data; hence, a supervised, goal-directed model that employs prior information as a reference to guide multimodal data fusion is much needed and becomes a natural option. Here, we proposed a fusion with reference model called "multi-site canonical correlation analysis with reference + joint-independent component analysis" (MCCAR+jICA), which can precisely identify co-varying multimodal imaging patterns closely related to the reference, such as cognitive scores. In a three-way fusion simulation, the proposed method was compared with its alternatives on multiple facets; MCCAR+jICA outperforms others with higher estimation precision and high accuracy on identifying a target component with the right correspondence. In human imaging data, working memory performance was utilized as a reference to investigate the co-varying working memory-associated brain patterns among three modalities and how they are impaired in schizophrenia. Two independent cohorts (294 and 83 subjects respectively) were used. Similar brain maps were identified between the two cohorts along with substantial overlaps in the central executive network in fMRI, salience network in sMRI, and major white matter tracts in dMRI. These regions have been linked with working memory deficits in schizophrenia in multiple reports and MCCAR+jICA further verified them in a repeatable, joint manner, demonstrating the ability of the proposed method to identify potential neuromarkers for mental disorders.


Asunto(s)
Mapeo Encefálico/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Esquizofrenia/diagnóstico por imagen , Adulto , Algoritmos , Estudios de Cohortes , Simulación por Computador , Humanos , Persona de Mediana Edad , Aprendizaje Automático Supervisado
14.
J Neurosci Methods ; 291: 61-68, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28807861

RESUMEN

BACKGROUND: A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data. NEW METHOD: Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios. RESULTS: Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios. COMPARISON WITH EXISTING METHOD (S): Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth. CONCLUSION: Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Humanos , Modelos Neurológicos
15.
Front Neurosci ; 11: 267, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28579940

RESUMEN

Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guided independent component analysis (GIG-ICA) as a variant of GICA has been proposed to improve the accuracy of the subject-specific ICs estimation by optimizing their independence. Independent vector analysis (IVA) is another method which optimizes the independence among each subject's components and the dependence among corresponding components of different subjects. Both methods are promising in neuroimaging study and showed a better performance than the traditional GICA. However, the difference between IVA and GIG-ICA has not been well studied. A detailed comparison between them is demanded to provide guidance for functional network analyses. In this work, we employed multiple simulations to evaluate the performances of the two approaches in estimating subject-specific components and time courses under conditions of different data quality and quantity, varied number of sources generated and inaccurate number of components used in computation, as well as the presence of spatially subject-unique sources. We also compared the two methods using healthy subjects' test-retest resting-state fMRI data in terms of spatial functional networks and functional network connectivity (FNC). Results from simulations support that GIG-ICA showed better recovery accuracy of both components and time courses than IVA for those subject-common sources, and IVA outperformed GIG-ICA in component and time course estimation for the subject-unique sources. Results from real fMRI data suggest that GIG-ICA resulted in more reliable spatial functional networks and yielded higher and more robust modularity property of FNC, compared to IVA. Taken together, GIG-ICA is appropriate for estimating networks which are consistent across subjects, while IVA is able to estimate networks with great inter-subject variability or subject-unique property.

16.
Brain Struct Funct ; 222(9): 4051-4064, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28600678

RESUMEN

Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.


Asunto(s)
Trastorno Bipolar/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/patología , Adulto , Trastorno Bipolar/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Oxígeno/sangre , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
17.
Neuroimage ; 145(Pt B): 218-229, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27177764

RESUMEN

Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r=0.7033, MCCB social cognition r=0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r=0.7785, PANSS negative r=0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making.


Asunto(s)
Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Esquizofrenia/diagnóstico , Adulto , Biomarcadores , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Adulto Joven
18.
Front Hum Neurosci ; 10: 476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733821

RESUMEN

The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

19.
Sci Rep ; 6: 25836, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27161845

RESUMEN

Primary dysmenorrhea (PDM), a significant public health problem for adolescents and young women, is characterized by painful menstrual cramps. Recent neuroimaging studies have revealed that brain functional and structural abnormalities are related to the pathomechanism of PDM. However, it is not clear whether there are white matter (WM) alterations in PDM. We analyzed diffusion tensor imaging data from 35 patients and 35 healthy controls (HCs) matched for age and handedness. Tract-based spatial statistics and probabilistic tractography were used to measure integrity of WM microstructure. Compared to HCs, patients had increased fractional anisotropy (FA) along with decreased mean diffusivity (MD) and radial diffusivity (RD) in the corpus callosum (CC), superior longitudinal fasciculus (LF), corona radiata (CR), internal capsule (IC) and external capsule (EC). The FA of the splenium CC and right IC positively correlated with PDM duration while FA of the right anterior CR positively correlated with PDM severity in patient group. These WM tracts were found to show connections to other brain regions implicated in sensoimotor, affective, cognitive and pain processing functions through tractography. These findings provide preliminary evidence for WM microstructure alterations in PDM, which is potentially valuable for understanding pathomechanism of PDM.


Asunto(s)
Imagen de Difusión Tensora , Dismenorrea/patología , Sustancia Blanca/patología , Anisotropía , Ansiedad/complicaciones , Demografía , Depresión/complicaciones , Dismenorrea/complicaciones , Dismenorrea/psicología , Femenino , Humanos , Probabilidad , Adulto Joven
20.
Schizophr Res ; 170(1): 55-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26654933

RESUMEN

Default mode network (DMN) has been reported altered in schizophrenia (SZ) using static connectivity analysis. However, the studies on dynamic characteristics of DMN in SZ are still limited. In this work, we compare dynamic connectivity within DMN between 82 healthy controls (HC) and 82 SZ patients using resting-state fMRI. Firstly, dynamic DMN was computed using a sliding time window method for each subject. Then, the overall connectivity strengths were compared between two groups. Furthermore, we estimated functional connectivity states using K-means clustering, and then investigated group differences with respect to the connectivity strengths in states, the dwell time in each state, and the transition times between states. Finally, graph metrics of time-varying connectivity patterns and connectivity states were assessed. Results suggest that measured by the overall connectivity, HC showed stronger inter-subsystem interaction than patients. Compared to HC, patients spent more time in the states with nodes sparsely connected. For each state, SZ patients presented relatively weaker connectivity strengths mainly in inter-subsystem. Patients also exhibited lower values in averaged node strength, clustering coefficient, global efficiency, and local efficiency than HC. In summary, our findings indicate that SZ show impaired interaction among DMN subsystems, with a reduced central role for posterior cingulate cortex (PCC) and anterior medial prefrontal cortex (aMPFC) hubs as well as weaker interaction between dorsal medial prefrontal cortex (dMPFC) subsystem and medial temporal lobe (MTL) subsystem. For SZ, decreased integration of DMN may be associated with impaired ability in making self-other distinctions and coordinating present mental states with episodic decisions about future.


Asunto(s)
Encéfalo/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Mapeo Encefálico/métodos , Análisis por Conglomerados , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Escalas de Valoración Psiquiátrica , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...