Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int Endod J ; 57(4): 431-450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240345

RESUMEN

AIM: Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms. METHODOLOGY: The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy. RESULTS: Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model. CONCLUSIONS: Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.


Asunto(s)
MicroARNs , Osteogénesis , Humanos , Animales , Ratas , Osteogénesis/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , Hibridación Fluorescente in Situ , Papila Dental , Diferenciación Celular , Células Madre , Proliferación Celular , Células Cultivadas , MicroARNs/genética , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
ACS Appl Mater Interfaces ; 15(42): 49545-49553, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830979

RESUMEN

Here, a photoelectrochemical (PEC) photodetector with good flexibility and high photoresponsivity was successfully fabricated in a vertical structure, where the MXene (Ti2CTx) nanosheet and carbon black electrode were separated by adenosine triphosphate/nicotinamide adenine dinucleotide phosphate (ATP/NADPH)-incorporated solid-state electrolyte. The photocurrent and photoresponsivity can reach 1.84 µA/cm2 and 8.89 µA/W, respectively, under a light intensity of 90 mW/cm2 at a bias potential of 0.6 V, which are approximately 2.3 times those of Ti2CTx nanosheets. The addition of ATP and NADPH to the electrolyte also leads to a large decrease of the rise time from 0.76 to 0.26 s. Furthermore, the photodetector can continue to function and maintain stability under 45° bending and after 500 cycles of bending, indicating a robust device structure and great flexibility. The performance enhancement of the PEC photodetector can be attributed to the synergistic effect of electrolyte additives on Ti2CTx nanosheets, where ATP and NADPH greatly enhance the circulation and utilization of photogenerated carriers. This work suggests that the incorporation of chloroplast-inspired carrier circulation with two-dimensional nanosheets could achieve efficient light-current conversion, providing a new strategy to improve the performance of PEC-type photodetectors.

3.
Chem Commun (Camb) ; 58(39): 5829-5832, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35388851

RESUMEN

A mechanically interlocked [3]rotaxane was newly designed, synthesized, and employed as a ligand for constructing metal-organic frameworks (MOFs). The nano-confinement by macrocycles forces the soft bis-isophthalate axle into a pseudo-rigid conformation and coordinates to zinc(II) ions, affording a two- or three-dimensional MOF under controlled conditions. The 2D MOF exhibits a neutral framework with a periodic puckering sheet structure, while an anionic framework with a pts topology was observed for the 3D MOF. The phase purity of both bulk materials was confirmed by powder X-ray diffraction. Thermogravimetric analysis reveals that both materials are stable up to 250 °C. The success of applying mechanical bonds to rigidify flexible ligands provides new insights for the design of metal-organic frameworks.

4.
Curr Issues Mol Biol ; 45(1): 212-222, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36661502

RESUMEN

Virus infestation can seriously harm the host plant's growth and development. Turnip yellows virus (TuYV) infestation of host plants can cause symptoms, such as yellowing and curling of leaves and root chlorosis. However, the regulatory mechanisms by which TuYV affects host growth and development are unclear. Hence, it is essential to mine small RNA (sRNA) and explore the regulation of sRNAs on plant hosts for disease control. In this study, we analyzed high-throughput data before and after TuYV infestation in Arabidopsis using combined genetics, statistics, and machine learning to identify 108 specifically expressed and critical functional sRNAs after TuYV infection. First, comparing the expression levels of sRNAs before and after infestation, 508 specific sRNAs were significantly up-regulated in Arabidopsis after infestation. In addition, the results show that AI models, including SVM, RF, XGBoost, and CNN using two-dimensional convolution, have robust classification features at the sequence level, with a prediction accuracy of about 96.8%. A comparison of specific sRNAs with genome sequences revealed that 247 matched precisely with the TuYV genome sequence but not with the Arabidopsis genome, suggesting that TuYV viruses may be their source. The 247 sRNAs predicted target genes and enrichment analysis, which identified 206 Arabidopsis genes involved in nine biological processes and three KEGG pathways associated with plant growth and viral stress tolerance, corresponding to 108 sRNAs. These findings provide a reference for studying sRNA-mediated interactions in pathogen infection and are essential for establishing a vital resource of regulation network for the virus infecting plants and deepening the understanding of TuYV virus infection patterns. However, further validation of these sRNAs is needed to gain a new understanding.

5.
J Plant Res ; 134(4): 729-736, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33590370

RESUMEN

To obtain accurate spatially continuous reflectance from Unmanned Aerial Vehicle (UAV) remote sensing, UAV data needs to be integrated with the data on the ground. Here, we tested accuracy of two methods to inverse reflectance, Ground-UAV-Linear Spectral Mixture Model (G-UAV-LSMM) and Minimum Noise Fraction-Pixel Purity Index-Linear Spectral Mixture Model (MNF-PPI-LSMM). At wavelengths of 550, 660, 735 and 790 nm, which were obtained by UAV multispectral observations, we calculated the canopy abundance based on the two methods to acquire the inversion reflectance. The correlation of the inversion and measured reflectance values was stronger in G-UAV-LSMM than MNF-PPI-LSMM. We conclude that G-UAV-LSMM is the better model to obtain the canopy inversion reflectance.


Asunto(s)
Malus , Tecnología de Sensores Remotos , Modelos Lineales
6.
Org Biomol Chem ; 13(9): 2588-99, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25573411

RESUMEN

One pot syntheses of furan, thiophene, and pyrrole were accomplished by oxidative deacetylation using Mn(III)/Co(II) catalysts and the Paal-Knorr reaction from 1,5-dicarbonyl compounds, which are prepared from the conjugate addition of ethyl acetoacetate to α,ß-unsaturated carbonyl compounds. The oxidative deacetylation and reductive cyclization of ß-ketoesters derived from ethyl acetoacetate and o-nitrobenzyl bromides efficiently produced diversely substituted indoles.


Asunto(s)
Acetoacetatos/química , Ésteres/química , Hidrocarburos Aromáticos/síntesis química , Compuestos Organometálicos/química , Acetilación , Catálisis , Ciclización , Hidrocarburos Aromáticos/química , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA