Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hepatocell Carcinoma ; 10: 517-530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034304

RESUMEN

Purpose: Hepatocellular carcinoma (HCC) represents one of the most common tumors in the world. Our study aims to explore new markers and therapeutic targets for HCC. Heterogeneous Nuclear ribonucleoprotein A1 (hnRNPA1) has recently been found to be involved in the progression of several types of cancer, but its role in HCC remains uncovered. Methods: We performed bioinformatic analysis to preliminarily show the relationship between hnRNPA1 and liver cancer. Then the correlation of the hnRNPA1 gene expression with clinicopathological characteristics of HCC patients was verified by human liver cancer tissue microarrays. The functional role of this gene was evaluated by in vivo and vitro experiments. Results: Results showed that the expression of hnRNPA1 was upregulated in HCC tissues and was associated with pathological stage of HCC patients. Knockdown of hnRNPA1 gene markedly inhibited tumor growth in vivo, and reversed the effects on proliferation, migration and invasion and promoted apoptosis in vitro. Furthermore, down-regulation of hnRNPA1 gene expression can inhibit the activity of the MEK/ERK pathway. Conclusion: In our work, we combined bioinformatic analysis with in vivo and in vitro experiments to initially elucidate the function of hnRNPA1 in liver cancer, which may help to explore biomarkers and therapeutic targets for HCC patients.

2.
Front Genet ; 13: 931928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846147

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease with complex pathogenesis, which brings economic burden to the society, and there is still no effective therapy. Impaired autophagy has been implicated in the development of NAFLD. Long noncoding RNAs (lncRNAs) are also reported to play a role in the pathogenesis of NAFLD. However, the role of autophagy-related lncRNAs in NAFLD disease has not been elucidated. Here, we mined GSE135251, GSE160016, GSE130970 and GSE185062 datasets from the Gene Expression Omnibus database (GEO) and obtained the human autophagy-related gene list from the Human Autophagy Database (HADb) for in-depth bioinformatic analysis. Following differential expression analysis and intersection of the datasets, Pearson correlation analysis was performed on DElncRNAs and autophagy-related DEmRNAs to obtain autophagy-related lncRNAs, and then Starbase3.0 and TargetScan7.2 were used to construct competing endogenous RNAs (ceRNA) regulatory networks. We constructed four lncRNA-dominated ceRNA regulatory networks (PSMG3-AS1, MIRLET7BHG, RP11-136K7.2, LINC00925), and visualized with Cytoscape. Then we performed co-expression analysis of the ceRNA networks and autophagy-related genes, and functionally annotated them with Metascape. Finally, we performed receiver operating characteristic curve (ROC) analysis on lncRNAs and mRNAs within the ceRNA networks. Conclusively, our project is the first to study autophagy-related lncRNAs in NAFLD and finally mined four autophagy-related lncRNAs (PSMG3-AS1, MIRLET7BHG, RP11-136K7.2, LINC00925). We suggested that the four autophagy-related lncRNAs may be closely associated with the occurrence and development of NAFLD through the corresponding ceRNA regulatory networks. This research brings new horizons to the study of NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...