Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32113, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867946

RESUMEN

Introduction: Dysregulation in lipid metabolism contributes to the occurrence and development of various cancers. The connection between changes in lipid metabolism and the development of intrahepatic cholangiocarcinoma remains uncertain. Our objective was to investigate the significance of blood lipid levels in patients with intrahepatic cholangiocarcinoma who have undergone surgery. Methods: Ninety-seven ICC patients who underwent surgery were retrospectively enrolled. After 92.2 months of follow-up, the Kaplan-Meier analysis and Cox proportional hazard model were used to calculate overall survival and recurrence-free survival. Results: The median age of this cohort was 56 years, and 79 (81.4 %) of them were male. Eighty-eight (90.7 %) patients presented with tumor recurrence and 73 (75.3 %) died. In multivariate analyses, high-density lipoprotein cholesterol level (<0.91 vs. ≥ 0.91 mmol/L, hazard ratio [HR] = 2.55; 95 % CI: 1.38-4.71), lymph node metastasis (Yes vs. No, HR = 2.58; 95 % CI: 1.28-5.19), etiology factor (chronic HBV infection vs. others, HR = 0.5; 95 % CI: 0.28-0.88) and multiple tumor lesions (Yes vs. No, HR = 1.85; 95 % CI: 1.01-3.39) were independent predictors of overall survival. However, only high-density lipoprotein cholesterol level (HR = 1.86; 95 % CI: 1.19-2.92) emerged as the independent factor for recurrence-free survival. High-density lipoprotein cholesterol level (HR = 2.07; 95 % CI: 1.26-3.41), etiology factor (HR = 0.49; 95 % CI: 0.29-0.84), and multiple tumor lesions (HR = 2.00; 95 % CI: 1.14-3.51) were independent predictors of early recurrence. For patients who did not experience the spread of cancer to the lymph nodes, there was a significant correlation between the level of high-density lipoprotein cholesterol and their overall survival, recurrence-free survival, and early recurrence. For patients with low pre-operation high-density lipoprotein cholesterol levels, high post-operation high-density lipoprotein cholesterol levels were associated with better prognosis. Conclusions: Low serum high-density lipoprotein cholesterol level might serve as a sign of poor clinical outcomes (overall survival and recurrence-free survival) and early recurrence among intrahepatic cholangiocarcinoma patients. Strengthening the monitoring and intervention of intrahepatic cholangiocarcinoma patients with poor prognosis might be critical for improving the prognosis.

2.
J Mol Model ; 30(6): 175, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771411

RESUMEN

CONTEXT: Hydrogen sulfide gas poses significant risks to both human health and the environment, with the potential to induce respiratory and neurological effects, and a heightened fatality risk at elevated concentrations. This article investigates the catalytic decomposition of H2S on a Sc-Ti3C2O2 single-atom catalyst(SAC) using the density functional theory-based first-principles calculation approach. Initially, the adsorption behavior of H2S on Ti3C2O2-MXene was examined, revealing weak physical adsorption between them. Subsequently, the transition metal atom Sc was introduced to the Ti3C2O2 surface, and its stability was studied, demonstrating high stability. Further exploration of H2S adsorption on Sc-Ti3C2O2 revealed direct dissociation of H2S gas molecules into HS* and H*, with HS* binding to Sc and H* binding to O on the Ti3C2O2 surface, resulting in OH groups. Using the transition state search method, the dissociation of H2S molecules on the SAC's surface was investigated, revealing a potential barrier of 2.45 eV for HS* dissociation. This indicates that the H2S molecule can be dissociated into H2 and S with the action of the Sc-Ti3C2O2 SAC. Moreover, the S atom left on the catalyst surface can aggregate to produce elemental S8, desorbing on the catalyst surface, completing the catalytic cycle. Consequently, the Sc-Ti3C2O2 SAC is poised to be an efficient catalyst for the catalytic decomposition of H2S. METHODS: The Dmol3 module in Materials Studio software based on density functional theory is used in this study. The generalized gradient approximation method GGA-PBE is used for the exchange-correlation function. The complete LST/QST and the NEB methods in the Dmol3 module were used to study the minimum energy path of the dissociation of hydrogen sulfide molecules on the catalyst surface.

3.
Front Microbiol ; 15: 1373402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605714

RESUMEN

Introduction: The risk of ketosis is assessed by monitoring changes in plasma metabolites and cow behavior during the peripartum period. However, little is known about changes in the fecal bile acid and microbiota of cows before parturition. Therefore, this study clarified the bile acid profile and screened potential warning biomarkers in heifers 7 days before calving. Methods: Ninety healthy cows were tracked in the transition period, and plasma and feces were collected 7 days before calving, on calving day, and 7 days after calving. The cows were divided into ketosis and healthy groups based on the blood ß-hydroxybutyric acid levels from day 7 after calving. The levels of serum biochemical indices were measured at three time points using commercial kits. Ten cows in the ketosis group (KET-7) and 10 healthy cows (HEA-7) were randomly selected 7 days before calving for metabolome and 16S rRNA amplicon sequencing. Results: No significant differences in serum energy-related indices were observed 7 days before calving. The major bile acids in the feces of the KET-7 group were non-conjugated secondary bile acids (UnconSBA). Differential bile acids were primarily derived from UnconSBA. The potential ketosis warning metabolite in feces for 7 days before delivery was isodeoxycholic acid. The abundance of Rikenellaaceae-RC9-gut-group in the KET-7 group increased, whereas the abundance of Oscillospiraceae UCG-010 bacteria significantly decreased. Lactobacillus and Prevotella-9 in feces were potential warning biomarkers for ketosis in dairy cows 7 days before calving. The variation in differential bile acids in the plasma, consistent with the feces, was mainly derived from UnconSBA. Lithocholic acid in the plasma was a potential ketosis warning metabolite 7 days before delivery. Conclusion: Ketotic cows experienced bile acid metabolism disorders 7 days before calving, and the gut microbiota was closely related to bile acid metabolism disorders. Future studies should investigate the relationship between secondary bile acids and the development of ketosis.

4.
mSystems ; 9(4): e0002324, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501812

RESUMEN

Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as ß-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.


Asunto(s)
Microbioma Gastrointestinal , Insulinas , Femenino , Humanos , Embarazo , Bovinos , Animales , Lactancia/metabolismo , Glucosa/metabolismo , Lipólisis , Insulinas/metabolismo
5.
Front Mol Neurosci ; 17: 1335404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361743

RESUMEN

Introduction: Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods: MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results: A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion: In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.

6.
J Ethnopharmacol ; 323: 117685, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171467

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Placenta is a kind of traditional Chinese medicine, known as "Ziheche", which has the function of tonifying qi and blood, nourishing liver and kidney. Placenta extract (PE) has been used for delaying organismal aging and treating various liver diseases. Cow placenta is a rich natural resource with large mass. Its composition is similar to that of human placenta, but it has not been effectively utilized. However, little is known about the effect of CPE on the liver of aging mice. AIM OF THE STUDY: The aim of this study is to explore the protective effect and mechanism of CPE on the liver of d-galactose (D-gal) induced aging mice. MATERIALS AND METHODS: Statistical methods were used to calculate mouse body weight and liver index. Hematoxylin-eosin (H&E) and transmission electron microscopy (TEM) were used to detect the morphological structure of the liver. Automatic biochemical analyzer was used to measure serum biochemical indicators. Three special staining methods were used to observe hepatocytes apoptosis, senescence and proliferation respectively. Relative kits were used to detect oxidative, inflammatory, and aging markers in the liver. Finally, real-time quantitative polymerase chain reaction and western-blot were used to detect aging related signaling pathways. RESULTS: CPE significantly improved the morphological damage and dysfunction of liver, restored the activities of liver enzymes in serum, and alleviated liver oxidative stress and inflammatory response in D-gal induced aging mice. Furthermore, CPE inhibited hepatocyte apoptosis and senescence, and promoted hepatocyte proliferation by regulating BAX/CASP3 and p53/p21/p16 signaling pathways, ultimately reduced the effects of aging on the liver. CONCLUSION: CPE effectively ameliorated the impact of aging on the liver by inhibiting free radical production or scavenging excessive free radicals, and its mechanism is associated to the regulation of apoptosis and proliferation-related factors.


Asunto(s)
Antioxidantes , Hepatopatías , Femenino , Humanos , Ratones , Bovinos , Animales , Antioxidantes/farmacología , Proteína X Asociada a bcl-2/metabolismo , Galactosa , Proteína p53 Supresora de Tumor/metabolismo , Caspasa 3/metabolismo , Estrés Oxidativo , Envejecimiento
7.
Phytomedicine ; 124: 155302, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176273

RESUMEN

BACKGROUND: Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE: The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS: The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS: The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION: The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.


Asunto(s)
FN-kappa B , Saponinas , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Farmacología en Red , Adyuvantes Inmunológicos/farmacología , Citocinas/metabolismo , Saponinas/farmacología , Saponinas/metabolismo , Adyuvantes Farmacéuticos , Células Dendríticas
8.
Exp Neurol ; 373: 114682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199509

RESUMEN

Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Neuronas , Quimiocinas , Médula Espinal
9.
Gut Microbes ; 15(2): 2290320, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059752

RESUMEN

Women's health encompasses life-course healthcare, and mounting evidence emphasizes the pivotal contribution of gut microbiota. Therefore, understanding the temporal dynamics of gut microbiota and how age influences disease-gut microbiota associations is essential for improving women's health. By analyzing metagenomic data from 3625 healthy women, we revealed significant effects of age on gut microbiota and age-dependent patterns in microbial features, such as relative abundance, Shannon index, and microbial network properties. Additionally, declining trends in the predictive accuracy of gut microbiota for age groups were shown using iterative sub-sampling based random forest (ISSRF) model. Age-specific species markers were also identified, many of which were shared across age groups. To investigate the influence of age on disease-gut microbiota associations, metagenomic data from 681 women with various disease conditions and 491 matched healthy controls were collected. A substantial proportion of species markers for inflammatory bowel disease (IBD), type 2 diabetes (T2D), atherosclerotic cardiovascular disease (ACVD), and impaired glucose tolerance (IGT) differed in relative abundance across age groups, and were also age-specific species markers. Besides, the microbiota-based probabilities of IBD and ACVD were positively correlated with age. Furthermore, the age specificity of disease-gut microbiota associations was explored using the ISSRF model. Associations between IBD and gut microbiota were age-specific, with reduced stability of disease species markers in childhood and adolescence, possibly due to decrease in the effect size between patients and controls. Our findings provided valuable insights into promoting healthy aging and developing personalized healthcare strategies for women.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Adolescente , Humanos , Femenino , Salud de la Mujer
10.
Animals (Basel) ; 13(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958152

RESUMEN

Newly found biochemical characteristics of the placenta can provide new insights for further studies on the possible markers of physiological/pathological pregnancy or the function of the placenta. We compared the proteome of the dairy cow placenta after enzymatic hydrolysis by three different proteases using a label-free mass spectrometry approach. In total, 541, 136, and 86 proteins were identified in the trypsin group (TRY), pepsin group (PEP), and papain group (PAP). By comparing the proteome of the PAP and TRY, PEP and TRY, and PEP and PAP groups, 432, 421, and 136 differentially expressed proteins were identified, respectively. We compared the up-regulated DEPs and down-regulated DEPs of each comparison group. The results show that the proteins identified by papain were mostly derived from the extracellular matrix and collagen, and were enriched in the relaxin signaling pathway and AGE-RAGE signaling pathway in diabetic complications; pepsin digestion was able to identify more muscle-related proteins, which were enriched in the lysosome, platelet activation, cardiac muscle contraction, the bacterial invasion of epithelial cells, and small cell lung cancer; trypsin mainly enzymatically degraded the extracellular matrix, blood particles, and cell-surface proteins that were enriched in arginine and proline metabolism, olfactory transduction proteasome, protein processing in the endoplasmic reticulum, pyruvate metabolism, and arrhythmogenic right ventricular cardiomyopathy (ARVC). In summary, these results provide insights into the discovery of the physiological functions of dairy cow placenta and the selection of proteases in dairy cow placenta proteomics.

11.
Anal Chim Acta ; 1280: 341875, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858560

RESUMEN

The non-specific adsorption behaviors of various interferents on the surface of a molecularly imprinted polymer (MIP) are adverse for the selectivity of an MIP-based sensor, which can be overcome via a differential strategy by using the differential signal between MIP- and non-imprinted polymer (NIP)-based sensors. However, the normal differential mode is not suitable for the MIP-based sensors with non-linear calibration curves. Herein, an improved differential strategy is reported for an MIP-based sensor with a semi-logarithmic calibration curve, demonstrated by an electrochemiluminescence (ECL) sensor for dopamine (DA). Glassy carbon electrode (GCE) was modified by the mixture of g-C3N4, TiO2 nanoparticles (NPs) and carbon nanotubes (CNTs). MIP membrane for DA was fabricated on the surface of g-C3N4/TiO2NPs/CNTs/GCE using chitosan for film-forming, obtained MIP@GCE. To enhance the anti-interference ability of the MIP-based DA sensor, the difference between exponential functions ECL intensities of MIP@GCE and NIP@GCE is used as the analytical signal in the improved differential strategy. The differential signal was increased linearly with increasing DA concentration ranging from 10 pM to 0.10 µM, with the detection limit of 5.6 pM. The interference level of Cu2+ on DA determination in the improved differential mode is only 9.7% of that in the normal MIP mode. The improved differential strategy can be used in other MIP-based sensors with semi-logarithmic calibration curves.

12.
Exp Neurol ; 368: 114506, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597763

RESUMEN

Functional limitation caused by spinal cord injury (SCI) has the problem of significant clinical and economic burden. Damaged spinal axonal connections and an inhibitory environment severely hamper neuronal function. Regenerative biomaterials can fill the cavity and produce an optimal microenvironment at the site of SCI, inhibiting apoptosis, inflammation, and glial scar formation while promoting neurogenesis, axonal development, and angiogenesis. Decellularization aims to eliminate cells from the ultrastructure of tissues while keeping tissue-specific components that are similar to the structure of real tissues, making decellularized extracellular matrix (dECM) a suitable scaffold for tissue engineering. dECM has good biocompatibility, it can be widely obtained from natural organs of different species, and can be co-cultured with cells for 3D printing to obtain the target scaffold. In this paper, we reviewed the pathophysiology of SCI, the characteristics of dECM and its preparation method, and the application of dECM in the treatment of SCI. Although dECM has shown its therapeutic effect at present, there are still many indicators that need to be taken into account, such as the difficulty in obtaining materials and standardized production mode for large-scale use, the effect of decellularization on the physical and chemical properties of dECM, and the study on the synergistic effect of dECM and cells.


Asunto(s)
Matriz Extracelular Descelularizada , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Apoptosis , Axones , Materiales Biocompatibles
13.
Mol Nutr Food Res ; 67(18): e2200763, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37436078

RESUMEN

SCOPE: Apigenin (AP) has many pharmacological activities, including anti-inflammation, hyperlipidemia-lowering, and so on. Previous studies show that AP can reduce lipid accumulation in adipocytes in vitro. However, it remains unclear whether and how AP can promote fat-browning. Therefore, mouse obesity model and preadipocyte induction model in vitro are used to investigate the effects of AP on glycolipid metabolism, browning and autophagy as well as the possible mechanisms. METHODS AND RESULTS: The obese mice are intragastrically administrated with AP (0.1 mg g-1  d-1 ) for 4 weeks; meanwhile, the differentiating preadipocytes are respectively treated with the indicated concentrations of AP for 48 h. Metabolic phenotype, lipid accumulation, and fat-browning are respectively evaluated by morphological, functional, and specific markers analysis. The results show that AP treatment alleviates the body weight, glycolipid metabolic disorder, and insulin resistance in the obese mice , which is contributed to the pro-browning effects of AP in vivo and in vitro. Moreover, the study finds that the pro-browning effect of AP is accomplished through autophagy inhibition mediated by the activation of PI3K-Akt-mTOR pathway. CONCLUSIONS: The findings highlight that autophagy inhibition promotes the browning of white adipocytes and suggest that AP would prevent and treat obesity and the associated metabolic disorders.


Asunto(s)
Apigenina , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Apigenina/farmacología , Ratones Obesos , Fosfatidilinositol 3-Quinasas/metabolismo , Obesidad/metabolismo , Peso Corporal , Adipocitos Blancos/metabolismo , Dieta Alta en Grasa , Autofagia , Lípidos/farmacología , Tejido Adiposo Blanco , Tejido Adiposo Pardo , Ratones Endogámicos C57BL
14.
Vet Sci ; 10(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37505842

RESUMEN

Anemoside B4 has a good curative effect on cows with CM; however, its impact on their metabolic profiles is unclear. Based on similar somatic cell counts and clinical symptoms, nine healthy dairy cows and nine cows with CM were selected, respectively. Blood samples were collected from cows with mastitis on the day of diagnosis. Cows with mastitis were injected with anemoside B4 (0.05 mL/kg, once daily) for three consecutive days, and healthy cows were injected with the same volume of normal saline. Subsequently, blood samples were collected. The plasma metabolic profiles were analyzed using untargeted mass spectrometry, and the concentrations of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in serum were evaluated via ELISA. The cows with CM showed increased concentrations of IL-1ß, IL-6, and TNF-α (p < 0.05). After treatment with anemoside B4, the concentrations of IL-1ß, IL-6, and TNF-α were significantly decreased (p < 0.01). Untargeted metabolomics analysis showed that choline, glycocholic acid, PC (18:0/18:1), 20-HETE, PGF3α, and oleic acid were upregulated in cows with CM. After treatment with anemoside B4, the concentrations of PC (16:0/16:0), PC (18:0/18:1), linoleic acid, eicosapentaenoic acid, phosphorylcholine, and glycerophosphocholine were downregulated, while the LysoPC (14:0), LysoPC (18:0), LysoPC (18:1), and cis-9-palmitoleic acid were upregulated. This study indicated that anemoside B4 alleviated the inflammatory response in cows with CM mainly by regulating lipid metabolism.

15.
BMC Vet Res ; 19(1): 98, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516856

RESUMEN

BACKGROUND: Neonatal calf diarrhea (NCD) is typically treated with antibiotics, while long-term application of antibiotics induces drug resistance and antibiotic residues, ultimately decreasing feed efficiency. Pueraria polysaccharide (PPL) is a versatile antimicrobial, immunomodulatory, and antioxidative compound. This study aimed to compare the therapeutic efficacy of different doses of PPL (0.2, 0.4, 0.8 g/kg body weight (BW)) and explore the effect of plasma metabolites in diarrheal calves by the best dose of PPL. RESULTS: PPL could effectively improve the daily weight gain, fecal score, and dehydration score, and the dosage of 0.4 g/kg BW could reach curative efficacy against calf diarrhea (with effective rates 100.00%). Metabolomic analysis suggested that diarrhea mainly affect the levels of taurocholate, DL-lactate, LysoPCs, and intestinal flora-related metabolites, trimethylamine N-oxide; however, PPL improved liver function and intestinal barrier integrity by modulating the levels of DL-lactate, LysoPC (18:0/0:0) and bilirubin, which eventually attenuated neonatal calf diarrhea. It also suggested that the therapeutic effect of PPL is related to those differential metabolites in diarrheal calves. CONCLUSIONS: The results showed that 0.4 g/kg BW PPL could restore the clinical score of diarrhea calves by improving the blood indexes, biochemical indexes, and blood metabolites. And it is a potential medicine for the treatment of calf diarrhea.


Asunto(s)
Pueraria , Animales , Bovinos , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Antibacterianos , Ácido Láctico , Metabolómica
16.
J Hepatocell Carcinoma ; 10: 847-861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304208

RESUMEN

Background: We explore the dose-efficacy relationship of lenvatinib plus anti-PD-1 in patients with unresectable hepatocellular carcinoma (u-HCC) infected with hepatitis B virus (HBV) in real-world practice. Furthermore, we identify the population sensitive to lenvatinib plus anti-PD-1 treatments. Methods: This retrospective study included 70 patients treated with lenvatinib plus at least 3 cycles of anti-PD-1 and 140 with lenvatinib alone. Stabilized inverse probability of treatment weighting (SIPTW) was used to balance clinical features between the two groups. The overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and adverse events (AEs) were analyzed. Subpopulation treatment effect pattern plot (STEPP) estimated treatment-effect differences between the two groups. Results: The median age was 54 years, and 189 (90%) cases were male. A total of 180 (85%) patients were infected with HBV. A slowly increasing 12-month survival rate was with the cycles of anti-PD-1, and 5 cycles and more of anti-PD-1 appeared the most beneficial and stable survival rate. The lenvatinib plus at least 3 cycles anti-PD-1 group had better OS (21.4 vs 14 months, p = 0.041), PFS (8.0 vs 6.3 months, p = 0.015) than the lenvatinib alone group in unadjusted cohorts, and the SIPTW adjusted cohorts had confirmed it. For patients with portal vein trunk invasion (PVTI) or extrahepatic spread (EHS) combined with Child-Pugh class B (CPB), lenvatinib plus anti-PD-1 made the 12-month survival rate increase by 38%, while, in the other population, it did only 18%. The two groups had similar AEs (p ≥ 0.05). Conclusion: The lenvatinib combined with at least 3 cycles of anti-PD-1 was efficacy and safe for u-HCC patients infected with HBV. Especially, patients with PVTI or EHS combined with CPB may benefit most from the combination therapy.

17.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108174

RESUMEN

The receptor of advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) are important receptors for inflammatory responses induced by high glucose (HG) and lipopolysaccharide (LPS) and show crosstalk phenomena in inflammatory responses. However, it is unknown whether RAGE and TLR4 can influence each other's expression through a crosstalk mechanism and whether the RAGE-TLR4 crosstalk related to the molecular mechanism of HG enhances the LPS-induced inflammatory response. In this study, the implications of LPS with multiple concentrations (0, 1, 5, and 10 µg/mL) at various treatment times (0, 3, 6, 12, and 24 h) in primary bovine alveolar macrophages (BAMs) were explored. The results showed that a 5 µg/mL LPS treatment at 12 h had the most significant increment on the pro-inflammatory cytokine interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor (TNF)-α levels in BAMs (p < 0.05) and that the levels of TLR4, RAGE, MyD88, and NF-κB p65 mRNA and protein expression were upregulated (p < 0.05). Then, the effect of LPS (5 µg/mL) and HG (25.5 mM) co-treatment in BAMs was explored. The results further showed that HG significantly enhanced the release of IL-1ß, IL-6, and TNF-α caused by LPS in the supernatant (p < 0.01) and significantly increased the levels of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression (p < 0.01). Pretreatment with FPS-ZM1 and TAK-242, the inhibitors of RAGE and TLR4, significantly alleviated the HG + LPS-induced increment of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression in the presence of HG and LPS (p < 0.01). This study showed that RAGE and TLR4 affect each other's expression through crosstalk during the combined usage of HG and LPS and synergistically activate the MyD88/NF-κB signaling pathway to promote the release of pro-inflammatory cytokines in BAMs.


Asunto(s)
FN-kappa B , Receptor para Productos Finales de Glicación Avanzada , Receptor Toll-Like 4 , Animales , Bovinos , Citocinas/metabolismo , Glucosa , Productos Finales de Glicación Avanzada , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Alveolares/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , ARN Mensajero , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
18.
Metabolites ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36984773

RESUMEN

Dairy cows with ketosis have high circulating beta-hydroxybutyric acid (BHBA) concentrations alongside which inflammation is concomitantly developed. Tryptophan (Trp) is an essential amino acid that participates in the regulation of the inflammatory response. However, the association between Trp metabolism and inflammation in dairy cows with ketosis remains unclear. Therefore, blood samples from healthy (n = 10) and ketotic (n = 10) primiparous dairy cows were collected at the calving date and the day of ketosis diagnosis (7 days in milk (7 DIM)). Serum levels of non-esterified fatty acids (NEFA), BHBA, haptoglobin (HP), serum amyloid A (SAA), lipopolysaccharide, and cortisol were analyzed. Tryptophan and its metabolites were quantified using liquid chromatography-tandem mass spectrometry. At 7 DIM, the concentrations of NEFA, BHBA, HP, and SAA were higher and the levels of Trp, kynurenine (KYN), indoleacetic acid, indole-3-lactic acid, and 3-indoxyl sulfate were lower in the dairy cows with ketosis compared with those in the healthy cows. However, the KYN/Trp and melatonin/Trp ratios increased in the cows with ketosis. At the calving date, the serum lipopolysaccharide levels did not differ between the healthy and ketotic cows, whereas the levels of NEFA, HP, and cortisol increased in the ketotic cows. Correlation analysis showed that Trp deficiency and elevated Trp metabolism in the dairy cows occurred during ketosis. Overall, our results suggest that abnormal Trp metabolism may contribute to the pathogenesis of ketosis.

19.
J Colloid Interface Sci ; 642: 120-128, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001451

RESUMEN

The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/Fe3C particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process. Fe/Fe3C-A@CNT using iron acetylacetonate as metal sources possesses unique Fe/C heterogeneous, small Fe/Fe3C particles encapsulated by the thin carbon coating layer (1.77 nm), and obtains the optimal electron penetration effect. The electron penetration effect derives from the redistribution of charge between the surface carbon coating layer and inner Fe/Fe3C nanoparticles efficiently improving both catalytic activity and stability. Therefore, Fe/Fe3C-A@CNT shows efficient OER catalytic activity, just needing a low overpotential of 292 mV to reach a current density of 10 mA cm-2, and long-lasting stability. More importantly, the unique control strategy for carbon thickness in this work provides more opportunity and perspective to prepare robust metal/carbon-based catalytic materials at the nanoscale.

20.
Front Microbiol ; 14: 1087484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819040

RESUMEN

Introduction: Pseudorabies virus (PRV) is the pathogenic virus of porcine pseudorabies (PR), belonging to the Herpesviridae family. PRV has a wide range of hosts and in recent years has also been reported to infect humans. N6-methyladenosine (m6A) modification is the major pathway of RNA post-transcriptional modification. Whether m6A modification participates in the regulation of PRV replication is unknown. Methods: Here, we investigated that the m6A modification was abundant in the PRV transcripts and PRV infection affected the epitranscriptome of host cells. Knockdown of cellular m6A methyltransferases METTL3 and METTL14 and the specific binding proteins YTHDF2 and YTHDF3 inhibited PRV replication, while silencing of demethylase ALKBH5 promoted PRV output. The overexpression of METTL14 induced more efficient virus proliferation in PRV-infected PK15 cells. Inhibition of m6A modification by 3-deazaadenosine (3-DAA), a m6A modification inhibitor, could significantly reduce viral replication. Results and Discussion: Taken together, m6A modification played a positive role in the regulation of PRV replication and gene expression. Our research revealed m6A modification sites in PRV transcripts and determined that m6A modification dynamically mediated the interaction between PRV and host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...