Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 337: 122176, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710562

RESUMEN

One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.

2.
Angew Chem Int Ed Engl ; 63(21): e202400855, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38503692

RESUMEN

Postsynthetic modifications (PSMs) of metal-organic frameworks (MOFs) play a crucial role in enhancing material performance through open metal site (OMS) functionalization or ligand exchange. However, a significant challenge persists in preserving open metal sites during ligand exchange, as these sites are inherently bound by incoming ligands. In this study, for the first time, we introduced alkoxides by exchanging bridging chloride in Ni2Cl2BTDD (BTDD=bis (1H-1,2,3,-triazolo [4,5-b],-[4',5'-i]) dibenzo[1,4]dioxin) through PSM. Rietveld refinement of synchrotron X-ray diffraction data indicated that the alkoxide oxygen atom bridges Ni(II) centers while the OMSs of the MOF are preserved. Due to the synergy of the existing OMS and introduced functional group, the alkoxide-exchanged MOFs showed CO2 uptakes superior to the pristine MOF. Remarkably, the tert-butoxide-substituted Ni_T exhibited a nearly threefold and twofold increase in CO2 uptake compared to Ni2Cl2BTDD at 0.15 and 1 bar, respectively, as well as high water stability relative to the other exchanged frameworks. Furthermore, the Grand Canonical Monte Carlo simulations for Ni_T suggested that CO2 interacts with the OMS and the surrounding methyl groups of tert-butoxide groups, which is responsible for the enhanced CO2 capacity. This work provides a facile and unique synthetic strategy for realizing a desirable OMS-incorporating MOF platform through bridging ligand exchange.

3.
Int J Biol Macromol ; 254(Pt 2): 127883, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931865

RESUMEN

Acetylated chitin nanocrystals (ChNCs) were used as stabilizer in this work to prepare sunflower seed oil-in-water emulsions for the morphological and rheological studies. The results revealed that the acetylation with moderate degree of substitution (0.38) reduced hydrophilicity and increased surface charge level of rod-like ChNCs, and as a result, significantly improved the emulsifying ability of ChNCs. At the same oil/water ratio and particle loading, the emulsions stabilized with the acetylated ChNCs had far smaller droplet size (∼3 µm) as compared to the emulsions stabilized with the pristine ChNCs (5-7 µm). The increased droplets numbers and improved surface coating level resulted in the enhanced viscous resistance and yield stress level, which improved the physical stability of the acetylated ChNC-stabilized emulsions as a result. In addition, the droplet clusters easily formed in this system, contributing to weak strain overshoot and decreased large-deformation sensitivity during dynamic shear flow. Therefore, the acetylated ChNC-stabilized system showed enhanced transient stress overshoot during startup flow and weakened thixotropy during cyclic ramp shear flow as compared to the pristine ChNC-stabilized system. The relationships between surface acetylation of ChNCs and flow behavior of emulsions were then established, which provide valuable information on the modulation of the ChNC-stabilized Pickering emulsions.


Asunto(s)
Quitina , Nanopartículas , Emulsiones/química , Aceite de Girasol , Quitina/química , Acetilación , Tamaño de la Partícula , Nanopartículas/química
4.
J Am Chem Soc ; 146(1): 646-659, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38151051

RESUMEN

Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...