Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Materials (Basel) ; 17(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893751

RESUMEN

Lightweight and high-strength insulation materials have important application prospects in the aerospace, metallurgical, and nuclear industries. In this study, a highly porous silica fiber reinforced phenolic resin matrix composite was prepared by vacuum impregnation and atmospheric drying using quartz fiber needled felt as reinforcement and anhydrous ethanol as a pore-making agent. The effects of curing agent content on the structure, composition, density, and thermal conductivity of the composite were studied. The mechanical properties of the composite in the xy direction and z direction were analyzed. The results showed that this process can also produce porous phenolic resin (PR) with a density as low as 0.291 g/cm3, where spherical phenolic resin particles are interconnected to form a porous network structure with a particle size of about 5.43 µm. The fiber-reinforced porous PR had low density (0.372~0.397 g/cm3) and low thermal conductivity (0.085~0.095 W/m·K). The spherical phenolic resin particles inside the composite were well combined with the fiber at the interface and uniformly distributed in the fiber lap network. The composite possessed enhanced mechanical properties with compressive strength of 3.5-5.1 MPa in the xy direction and appeared as gradual compaction rather than destruction as the strain reached 30% in the z direction. This research provides a lightweight and high-strength insulation material with a simple preparation process and excellent performance.

2.
Mar Environ Res ; 198: 106557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823094

RESUMEN

Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.


Asunto(s)
Antozoos , Metabolismo Energético , Reproducción , Temperatura , Animales , Antozoos/fisiología , Arrecifes de Coral , Larva/fisiología , Larva/crecimiento & desarrollo , Aclimatación/fisiología
3.
Sci Total Environ ; 943: 173694, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852868

RESUMEN

The escalation of global change has resulted in heightened frequencies and intensities of environmental fluctuations within coral reef ecosystems. Corals originating from marginal reefs have potentially enhanced their adaptive capabilities in response to these environmental variations through processes of local adaptation. However, the intricate mechanisms driving this phenomenon remain a subject of limited investigation. This study aimed to investigate how corals in Luhuitou reef, a representative relatively high-latitude reef in China, adapt to seasonal fluctuations in seawater temperature and light availability. We conducted a 190-day plantation experiment with the widespread species, Galaxea fascicularis, in Luhuitou local, and from Meiji reef, a typical offshore tropical reef, to Luhuitou as comparison. Drawing upon insights from physiological adaptations, we focused on fatty acid (FA) profiles to unravel the trophic strategies of G. fascicularis to cope with environmental fluctuations from two origins. Our main findings are threefold: 1) Native corals exhibited a stronger physiological resilience compared to those transplanted from Meiji. 2) Corals from both origins consumed large quantities of energy reserves in winter, during which FA profiles of local corals altered, while the change of FA profiles of corals from Meiji was probably due to the excessive consumption of saturated fatty acid (SFA). 3) The better resilience of native corals is related to high levels of functional polyunsaturated fatty acid (PUFA), while insufficient nutrient reserves, possibly due to weak heterotrophic ability, result in the obstruction of the synthesis pathway of PUFA for corals from Meiji, leading to their intolerance to environmental changes. Consequently, we suggest that the tolerance of G. fascicularis to environmental fluctuations is determined by their local adapted trophic strategies. Furthermore, our findings underscore the notion that the rapid adaptation of relatively high-latitude corals to seasonal environmental fluctuations might not be readily attainable for their tropical counterparts within a brief timeframe.


Asunto(s)
Adaptación Fisiológica , Antozoos , Arrecifes de Coral , Antozoos/fisiología , Animales , China , Ácidos Grasos , Estaciones del Año , Agua de Mar/química , Temperatura , Monitoreo del Ambiente
4.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396871

RESUMEN

The Meconopsis species are widely distributed in the Qinghai-Tibet Plateau, Himalayas, and Hengduan Mountains in China, and have high medicinal and ornamental value. The high diversity of plant morphology in this genus poses significant challenges for species identification, given their propensity for highland dwelling, which makes it a question worth exploring how they cope with the harsh surroundings. In this study, we recently generated chloroplast (cp) genomes of two Meconopsis species, Meconopsis paniculata (M. paniculata) and M. pinnatifolia, and compared them with those of ten Meconopsis cp genomes to comprehend cp genomic features, their phylogenetic relationships, and what part they might play in plateau adaptation. These cp genomes shared a great deal of similarities in terms of genome size, structure, gene content, GC content, and codon usage patterns. The cp genomes were between 151,864 bp and 154,997 bp in length, and contain 133 predictive genes. Through sequence divergence analysis, we identified three highly variable regions (trnD-psbD, ccsA-ndhD, and ycf1 genes), which could be used as potential markers or DNA barcodes for phylogenetic analysis. Between 22 and 38 SSRs and some long repeat sequences were identified from 12 Meconopsis species. Our phylogenetic analysis confirmed that 12 species of Meconopsis clustered into a monophyletic clade in Papaveraceae, which corroborated their intrageneric relationships. The results indicated that M. pinnatifolia and M. paniculata are sister species in the phylogenetic tree. In addition, the atpA and ycf2 genes were positively selected in high-altitude species. The functions of these two genes might be involved in adaptation to the extreme environment in the cold and low CO2 concentration conditions at the plateau.


Asunto(s)
Genoma del Cloroplasto , Papaveraceae , Análisis de Secuencia de ADN , Filogenia , Genómica/métodos , Papaveraceae/genética , Evolución Molecular
5.
Sci Total Environ ; 921: 171098, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387572

RESUMEN

Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Transcriptoma , Epigenoma , Aclimatación/fisiología , Cambio Climático , Larva , Arrecifes de Coral
6.
Mar Environ Res ; 193: 106218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039737

RESUMEN

The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 µg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 µg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Cobre/toxicidad , Temperatura , Arrecifes de Coral
9.
Lipids Health Dis ; 22(1): 156, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736721

RESUMEN

Lipid metabolism disorders are considerably involved in the pathology of atherosclerosis; nevertheless, the fundamental mechanism is still largely unclear. This research sought to examine the function of lipophagy in lipid metabolism disorder-induced atherosclerosis and its fundamental mechanisms. Previously, Sirt6 has been reported to stimulate plaque stability by promoting macrophage autophagy. However, its role in macrophage lipophagy and its relationship with Wnt1 remains to be established. In this study, ApoE-/-: Sirt6-/- and ApoE-/-: Sirt6Tg mice were used and lipid droplets were analysed via transmission electron microscopy and Bodipy 493/503 staining in vitro. Atherosclerotic plaques in ApoE-/-: Sirt6-/- mice showed greater necrotic cores and lower stability score. Reconstitution of Sirt6 in atherosclerotic mice improved lipid metabolism disorder and prevented the progression of atherosclerosis. Furthermore, macrophages with Ac-LDL intervention showed more lipid droplets and increased expression of adipophilin and PLIN2. Reconstitution of Sirt6 recruited using SNF2H suppressed Wnt1 expression and improved lipid metabolism disorder by promoting lipophagy. In addition, downregulation of Sirt6 expression in Ac-LDL-treated macrophages inhibited lipid droplet degradation and stimulated foam cell formation. Innovative discoveries in the research revealed that atherosclerosis is caused by lipid metabolism disorders due to downregulated Sirt6 expression. Thus, modulating Sirt6's function in lipid metabolism might be a useful therapeutic approach for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Trastornos del Metabolismo de los Lípidos , Placa Aterosclerótica , Sirtuinas , Animales , Ratones , Metabolismo de los Lípidos/genética , beta Catenina , Aterosclerosis/genética , Placa Aterosclerótica/genética , Macrófagos , Apolipoproteínas E/genética , Autofagia/genética , Sirtuinas/genética
10.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444812

RESUMEN

Currently, most thin-layer expandable coatings are polymer-based, with very few inorganic expandable coatings. Due to the high environmental friendliness of inorganic coatings, studying new types of inorganic coatings is of great significance. A novel amorphous aluminum phosphate-based flame-retardant coating was prepared by modifying it with nano-silica, hollow silica beads, hollow glass microspheres, and boron carbide. A comprehensive study was conducted on the flame retardancy and thermal insulation performance, composition and structural evolution under flame and physical and chemical properties, and the mechanisms of flame retardancy and thermal insulation were elucidated. Large-plate combustion testing, bonding strength testing, XRD, IR, TG-DSC, and SEM testing were all applied in this work. The synergistic effect of the four fillers was very obvious, and a series of AP22XY (nano-silica/silica beads/hollow glass microspheres/boron carbide = 2:2:0:4, 2:2:1:3, 2:2:2:2, 2:2:3:1, 2:2:4:0) coatings were prepared. The change in the ratio of glass microspheres to boron carbide had a significant impact on the composition and structural evolution of the coating, thus reflecting its effectiveness as a flame retardant and thermal insulation. Although decreasing the ratio would promote the formation of borosilicate glass and Al18B4O33 and improve the thermal stability of coatings, the structure inside of the coating, especially the skeleton, would be dense, which is not conducive to thermal insulation. When the ratio of glass microspheres to boron carbide is 3:1, AP2231 shows the best fire resistance. Under the combustion of butane flame at about 1200-1300 °C, the backside temperature reaches a maximum of 226 °C at 10 min, and then the temperature gradually decreases to 175 °C at 60 min. This excellent performance is mainly attributed to three aspects: (1) the foaming and expandability of coatings when exposed to fire, (2) the multiple endothermic reactions the coating undergoes, and (3) the improvement effect of boron carbide. Additionally, AP2231 shows the best bonding performance with a strength of close to 4.5 MPa after combustion, because of the appropriate content matching between borosilicate glass, Al18B4O33, and hollow glass microspheres. The coating has potential application prospects in the construction and transportation fields, such as the protection of structural steel, fire prevention in subways and tunnels, and the prevention of lithium battery fires.

11.
Biomater Res ; 27(1): 64, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400932

RESUMEN

BACKGROUND: Protocell refers to the basic unit of life and synthetic molecular assembly with cell structure and function. The protocells have great applications in the field of biomedical technology. Simulating the morphology and function of cells is the key to the preparation of protocells. However, some organic solvents used in the preparation process of protocells would damage the function of the bioactive substance. Perfluorocarbon, which has no toxic effect on bioactive substances, is an ideal solvent for protocell preparation. However, perfluorocarbon cannot be emulsified with water because of its inertia. METHODS: Spheroids can be formed in nature even without emulsification, since liquid can reshape the morphology of the solid phase through the scouring action, even if there is no stable interface between the two phases. Inspired by the formation of natural spheroids such as pebbles, we developed non-interfacial self-assembly (NISA) of microdroplets as a step toward synthetic protocells, in which the inert perfluorocarbon was utilized to reshape the hydrogel through the scouring action. RESULTS: The synthetic protocells were successfully obtained by using NISA-based protocell techniques, with the morphology very similar to native cells. Then we simulated the cell transcription process in the synthetic protocell and used the protocell as an mRNA carrier to transfect 293T cells. The results showed that protocells delivered mRNAs, and successfully expressed proteins in 293T cells. Further, we used the NISA method to fabricate an artificial cell by extracting and reassembling the membrane, proteins, and genomes of ovarian cancer cells. The results showed that the recombination of tumor cells was successfully achieved with similar morphology as tumor cells. In addition, the synthetic protocell prepared by the NISA method was used to reverse cancer chemoresistance by restoring cellular calcium homeostasis, which verified the application value of the synthetic protocell as a drug carrier. CONCLUSION: This synthetic protocell fabricated by the NISA method simulates the occurrence and development process of primitive life, which has great potential application value in mRNA vaccine, cancer immunotherapy, and drug delivery.

12.
Front Bioeng Biotechnol ; 11: 1176352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180036

RESUMEN

A highly efficient strategy using Copper-Glycyl-L-Histidyl-L-Lysine (GHK-Cu) as a novel inducer was developed to enhance laccase production by Trametes versicolor. After medium optimization, laccase activity increased by 12.77-fold compared to that without GHK-Cu. The laccase production of 1113.8 U L-1 was obtained by scaling-up culture in 5-L stirring tank. The laccase production induced by CuSO4 was poorer than that of GHK-Cu at the same mole concentration. GHK-Cu could increase the permeability of cell membrane with less damage, and it facilitated the adsorption, accumulation, and utilization of copper by fungal cells, which was beneficial for laccase synthesis. GHK-Cu induced better expression of laccase related genes than that of CuSO4, resulting in higher laccase production. This study provided a useful method for induced production of laccase by applying GHK chelated metal ion as a non-toxic inducer, which reduced the safety risk of laccase broth and provided the potential application of crude laccase in food industry. In addition, GHK can be used as the carrier of different metal ions to enhance the production of other metalloenzymes.

13.
Small Methods ; 7(12): e2300231, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37116092

RESUMEN

In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.


Asunto(s)
Células Artificiales , Células Artificiales/metabolismo , Transducción de Señal , Tecnología
14.
BMC Plant Biol ; 23(1): 156, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36944988

RESUMEN

BACKGROUND: Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates. RESULTS: The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP. CONCLUSION: The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Rhodiola , Rhodiola/genética , Filogenia , Tibet , Mitocondrias/genética , Genoma Mitocondrial/genética , Evolución Molecular
15.
Plant Cell Rep ; 42(5): 879-893, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36973418

RESUMEN

KEY MESSAGE: Positive selection genes are related to metabolism, while differentially expressed genes are related to photosynthesis, suggesting that genetic adaptation and expression regulation may play independent roles in different gene classes. Genome-wide investigation of the molecular mechanisms for high-altitude adaptation is an intriguing topic in evolutionary biology. The Qinghai-Tibet Plateau (QTP) with its extremely variable environments is an ideal site for studying high-altitude adaptation. Here, we used transcriptome data of 100 individuals from 20 populations collected from various altitudes on the QTP to investigate the adaptive mechanisms of the aquatic plant Batrachium bungei at both the genetic and transcriptional level. To explore genes and biological pathways that may contribute to QTP adaptation, we employed a two-step approach, in which we identified positively selected genes and differentially expressed genes using the landscape genomic and differential expression approaches. The positive selection analysis showed that genes involved in metabolic regulation played a crucial role in B. bungei adaptation to the extreme environments of the QTP, especially intense ultraviolet radiation. Altitude-based differential expression analysis suggested that B. bungei could increase the rate of energy dissipation or reduce the efficiency of light energy absorption by down regulating the expression of photosynthesis-related genes to adapt to the strong ultraviolet radiation. Weighted gene co-expression network analysis identified ribosomal genes as hubs of altitude adaptation in B. bungei. Only a small part of genes (about 10%) overlapped between positively selected genes and differentially expressed genes in B. bungei, suggesting that genetic adaptation and gene expression regulation might play relatively independent roles in different categories of functional genes. Taken together, this study enriches our understanding of the high-altitude adaptation mechanism of B. bungei on the QTP.


Asunto(s)
Transcriptoma , Rayos Ultravioleta , Transcriptoma/genética , Tibet , Adaptación Fisiológica/genética , Aclimatación/genética
16.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838786

RESUMEN

The naringin extraction process was optimised using response surface methodology (RSM). A central component design was adopted, which included four parameters: extraction temperature (X1), material-liquid ratio (X2), extraction time (X3), and ultrasonic frequency (X4) of 74.79 °C, 1.58 h, 1:56.51 g/mL, and 28.05 KHz, respectively. Based on these optimal extraction conditions, naringin was tested to verify the model's accuracy. Naringin yield was 36.2502 mg/g, which was equivalent to the predicted yield of 36.0124 mg/g. DM101 macroporous adsorption resin was used to purify naringin. The effects of loading concentration, loading flow rate, and sample pH on the adsorption rate of naringin and the effect of ethanol concentration on the desorption rate of naringin were investigated. The optimum conditions for naringin purification using macroporous resins were determined. The optimal loading concentration, sample solution pH, and loading flow rate were 0.075 mg/mL, 3.5, and 1.5 mL/min, respectively. Three parallel tests were conducted under these conditions, and the average naringin yield was 77.5643%. Naringin's structure was identified using infrared spectroscopy and nuclear magnetic resonance. In vitro determination of the lipid-lowering activity of naringin was also conducted. These results showed that naringin has potential applications as a functional food for lowering blood lipid levels.


Asunto(s)
Flavanonas , Ultrasonido , Extractos Vegetales/química , Temperatura
17.
Mol Ecol ; 32(5): 1098-1116, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528869

RESUMEN

Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.


Asunto(s)
Antozoos , Termotolerancia , Animales , Antozoos/genética , Arrecifes de Coral , Larva , Termotolerancia/genética , Aclimatación , Simbiosis
18.
Plant Mol Biol ; 111(3): 275-290, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36534297

RESUMEN

It is an intriguing issue of evolutionary biology how genetic diversity and gene expression diversity shape the adaptive patterns. Comparative transcriptomic studies of wild populations in extreme environments provide critical insights into the relative contribution of genetic and expressive components. In this study, we analyzed the genetic diversity and gene expression diversity of 20 populations of the aquatic plant Batrachium bungei along elevations ranging from 2690 to 4896 m on the Qinghai-Tibet plateau (QTP). Based on single nucleotide polymorphisms (SNPs) and gene expression data from 100 individuals of B. bungei, we found that variation in genetic sequence was more sensitive to detect weak differentiation than gene expression. Using 292,613 high-quality SNPs, we documented a significant phylogeographical structure, a low within-population genetic diversity, and a high inter-population genetic differentiation in B. bungei populations. Analysis of relationship between geographic distance, genetic distance, and gene expression similarity showed that geographic isolation shaped gene flow patterns but not gene expression patterns. We observed a negative relationship between genetic diversity and gene expression diversity within and among B. bungei populations, and we demonstrated that as environmental conditions worsen with increasing altitude, genetic diversity played an increased role in maintaining the stability of populations, while the corresponding role of gene expression diversity decreased. These results suggested that genetic diversity and gene expression diversity might act as a complementary mechanism contributing to the long-term survival of B. bungei in extreme environments.


Asunto(s)
Evolución Biológica , Variación Genética , Tibet , Transcriptoma
19.
Food Chem ; 406: 135005, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36446282

RESUMEN

An efficient strategy for phycobiliprotein extraction from Spirulina platensis dry biomass has been developed by using NaCl as an enhancer. Different sodium ion and chloride ion salts were screened, and NaCl was selected as the most appropriate solvent for phycobiliprotein extraction. The extraction parameters with NaCl were optimized using response surface methodology. Under optimal operating conditions, a phycobiliprotein extraction rate of 74.8 % and a phycocyanin extraction yield of 102.4 mg/g with a purity of 74.0 % were achieved. Adding NaCl resulted in smaller fragments and destroyed the cell integrity of S. platensis, facilitating phycobiliprotein exudation. The secondary structure and antioxidant activity of phycobiliproteins were not affected by NaCl extraction. The stability of the phycobiliproteins was improved by adding NaCl. This study provides a potential method for phycobiliprotein extraction with high efficiency and good quality using an inexpensive extraction enhancer.


Asunto(s)
Ficobiliproteínas , Spirulina , Cloruro de Sodio , Biomasa , Spirulina/química , Ficocianina/química
20.
Foods ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38231709

RESUMEN

Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...