Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Heliyon ; 10(9): e29809, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699024

RESUMEN

Anal fistula is a common anal and intestinal disease. The wound of anal fistula surgery is open and polluting, which is the most difficult to heal among all surgical incisions. To investigate the mechanism of Huanglian ointment (HLO) on wound healing after anal fistula incision. The S. aureus infected wound in SD rats were used to imitate poor healing wound after anal fistula surgery. SD rats with wound sites (n = 24) were randomly divided into four groups (Control group, Model group, Potassium permanganate (PP) treatment group, and HLO treatment group). The wound healing rate was evaluated, HE staining was used to evaluate the pathological changes of each group, ELISA was used to detect the secretion of inflammatory factors in each group, and the mechanism was explored through metabolomics and proteomics in plasma rat. Compared to other groups, the rate of wound healing in the HLO group was higher on days 7 and 14. Histological analysis showed that collagen and fibroblast in HLO rats were significantly increased, inflammatory cells were reduced, and vascular endothelial permeability was increased. ELISA results showed that the secretion of inflammatory factors in HLO rats was significantly lower. Significant proteins and metabolites were identified in the wound tissues of the infected rats and HLO-treated rats, which were mainly attributed to Cdc42, Ctnnb1, Actr2, Actr3, Arpc1b, Itgam, Itgb2, Cttn, Linoleic acid metabolism, d-Glutamine and d-glutamate metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Phenylalanine metabolism, alpha-Linolenic acid metabolism, and Ascorbate and aldarate metabolism. In conclusion, this study showed that HLO can promote S. aureus infected wound healing, and the data provide a theoretical basis for the treatment of wounds after anal fistula surgery with HLO.

2.
Bioeng Transl Med ; 9(2): e10624, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435820

RESUMEN

Cisplatin-containing combination chemotherapy has been used as the standard treatment for bladder cancer patients at advanced stage. However, nearly 50% of patients are nonresponders. To guide the selection of more effective chemotherapeutic agents, a bladder cancer spheroids microfluidic drug sensitivity analysis system was established in this study. Bladder cancer spheroids were established and successfully cultured in a customized microfluidic device to assess their response to different chemotherapeutic agents. The in vitro drug sensitivity results were also compared to patient-derived xenograft (PDX) models and clinical responses of patients. As a result, bladder cancer spheroids faithfully recapitulate the histopathological and genetic features of their corresponding parental tumors. Furthermore, the in vitro drug sensitivity outcomes of spheroids (n = 8) demonstrated a high level of correlation with the PDX (n = 2) and clinical response in patients (n = 2). Our study highlights the potential of combining bladder cancer spheroids and microfluidic devices as an efficient and accurate platform for personalized selection of chemotherapeutic agents.

3.
J Genet Genomics ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325701

RESUMEN

Heterosis, also known as hybrid vigor, is commonly observed in rice crosses. The hybridization of rice species or subspecies exhibits robust hybrid vigor, however, the direct harnessing of this vigor is hindered by reproductive isolation. Here, we review recent advances in the understanding of the molecular mechanisms governing reproductive isolation in inter-subspecific and inter-specific hybrids. This review encompasses the genetic model of reproductive isolation within and among Oryza sativa species, emphasizing the essential role of mitochondria in this process. Additionally, we delve into the molecular intricacies governing the interaction between mitochondria and autophagosomes, elucidating their significant contribution to reproductive isolation. Furthermore, our exploration extends to comprehending the evolutionary dynamics of reproductive isolation and speciation in rice. Building on these advances, we offer a forward-looking perspective on how to overcome the challenges of reproductive isolation and facilitate the utilization of heterosis in future hybrid rice breeding endeavors.

4.
J Biochem Mol Toxicol ; 38(1): e23624, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229323

RESUMEN

Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) could alleviate Alzheimer's disease (AD) defects. Additionally, engineered exosomes are more effective in treating diseases. In this study, we established an in vitro model of AD by treating SH-SY5Y cells with Aß1-40 . We observed that incubation with hucMSC-derived exosomes effectively protected SH-S5Y5 cells from Aß1-40 -induced damage. Since NEP plays a central role in suppressing AD development, we screened NEP-targeting miRNAs that are differentially expressed in control and AD patients. We identified miR-211-5p as a potent repressor of NEP expression. Exosomes purified from hucMSCs overexpressing miR-211-5p inhibitor exhibited significantly greater efficiency than control exosomes in mitigating the injury caused by Aß1-40 treatment. However, this enhanced protective effect was nullified by the knockdown of NEP. These observations demonstrate that inhibition of miR-211-5p has the potential to improve the efficacy of hucMSC-derived exosomes in AD treatment by increasing NEP expression.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Neuroblastoma , Humanos , Exosomas/metabolismo , Neuroblastoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Cordón Umbilical/metabolismo
5.
Mar Pollut Bull ; 199: 115960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159383

RESUMEN

Prometryn has been extensively detected in marine environment because of its widespread usage in agriculture and aquaculture and has been concerns since its serious effects on aquatic organisms. However, its impact on the microbial community in the marine ecosystem including seawater and biofilm is still unclear. Therefore, a short-term indoor microcosm experiment of prometryn exposure was conducted. This study found that prometryn had a more significant impact on the structure and stability of the microbial community in seawater compared to microplastic biofilms. Additionally, we observed that the assembly of the microbial community in biofilms was more affected by stochastic processes than in seawater under the exposure of prometryn. Our study provided evidence for the increasing impact of the microbial communities under the stress of prometryn and microplastics.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos , Ecosistema , Plásticos , Prometrina , Agua de Mar/química , Biopelículas , Contaminantes Químicos del Agua/análisis
6.
Heliyon ; 9(11): e21611, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027638

RESUMEN

The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.

7.
Environ Sci Pollut Res Int ; 30(58): 122165-122181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966654

RESUMEN

As one of the common plasticizers, di-n-butyl phthalate (DBP) has been using in various daily consumer products worldwide. Since it is easily released from products and exists in the environment for a long time, it has a lasting impact on human health, especially male reproductive health. However, the detailed mechanism of testicular damage from DBP and the protection strategy are still not clear enough. In this study, we found that DBP could induce dose-dependent ferroptosis in testicular tissue. Mechanism dissection indicates that DBP can upregulate SP1 expression, which could directly transcriptionally upregulate PRDX6, a negative regulator of ferroptosis. Overexpression of PRDX6 or adding SP1 agonist curcumin could suppress the DBP-induced ferroptosis on testicular cells. In vivo, rats were given 500 mg/kg/day DBP orally for 3 weeks; elevated levels of ferroptosis were detected in testicular tissue. When the above-mentioned doses of DBP and curcumin at a dose of 300 mg/kg/day were administered intragastrically simultaneously, the testicular ferroptosis induced by DBP was alleviated. Immunohistochemistry and quantitative real-time PCR of testis tissue showed that the expression of PRDX6 was upregulated under the action of DBP and curcumin. These findings suggest a spontaneous self-protection mechanism of testicular tissue from DBP damage by upregulating SP1 and PRDX6. However, it is not strong enough to resist the DBP-induced ferroptosis. Curcumin can strengthen this self-protection mechanism and weaken the level of ferroptosis induced by DBP. This study may help us to develop a novel therapeutic option with curcumin to protect the testicular tissue from ferroptosis and function impairment by DBP.


Asunto(s)
Curcumina , Ferroptosis , Ratas , Masculino , Humanos , Animales , Testículo , Dibutil Ftalato/toxicidad , Dibutil Ftalato/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Plastificantes/toxicidad , Plastificantes/metabolismo , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo
8.
Nat Commun ; 14(1): 7528, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980335

RESUMEN

Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Hibridación Genética , Cruzamientos Genéticos , Oryza/genética , Antídotos , Mapeo Cromosómico , Aislamiento Reproductivo , Infertilidad Vegetal/genética
9.
Front Microbiol ; 14: 1253415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829448

RESUMEN

Introduction: Soil salinization poses a worldwide challenge that hampers agricultural productivity. Methods: Employing high-throughput sequencing technology, we conducted an investigation to examine the impact of compost on the diversity of bacterial communities in saline soils. Our study focused on exploring the diversity of bacterial communities in the inter-root soil of plants following composting and the subsequent addition of compost to saline soils. Results: Compared to the initial composting stage, Alpha diversity results showed a greater diversity of bacteria during the rot stage. The germination index reaches 90% and the compost reaches maturity. The main bacterial genera in compost maturation stage are Flavobacterium, Saccharomonospora, Luteimonas and Streptomyces. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla in the soil after the addition of compost. The application of compost has increased the abundance of Actinobacteria and Chloroflexi by 7.6 and 6.6%, respectively, but decreased the abundance of Firmicutes from 25.12 to 18.77%. Redundancy analysis revealed that soil factors pH, solid urease, organic matter, and total nitrogen were closely related to bacterial communities. Discussion: The addition of compost effectively reduced soil pH and increased soil enzyme activity and organic matter content. An analysis of this study provides theoretical support for compost's use as a saline soil amendment.

10.
Ren Fail ; 45(2): 2257804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724568

RESUMEN

OBJECTIVES: Antibody-mediated rejection (AMR) is a large obstacle to the long-term survival of allograft kidneys. It is urgent to find novel strategies for its prevention and treatment. Bibliometric analysis is helpful in understanding the directions of one field. Hence, this study aims to analyze the state and emerging trends of AMR in kidney transplantation. METHODS: Literature on AMR in kidney transplantation from 1999 to 2022 was collected from the Web of Science Core Collection. HistCite (version 12.03.17), CiteSpace (version 6.2.R2), Bibliometrix 4.1.0 Package from R language, and Gephi (https://gephi.org) were applied to the bibliometric analysis of the annual publications, leading countries/regions, core journals, references, keywords, and trend topics. RESULTS: A total of 2522 articles related to AMR in kidney transplantation were included in the analysis and the annual publications increased year by year. There were 10874 authors from 118 institutions located in 70 countries/regions contributing to AMR studies, and the United States took the leading position in both articles and citation scores. Halloran PF from Canada made the most contribution to AMR in kidney transplantation. The top 3 productive journals, American Journal of Transplantation, Transplantation, and Transplantation Proceedings, were associated with transplantation. Moreover, the recent trend topics mainly focused on transplant outcomes, survival, and clinical research. CONCLUSIONS: North American and European countries/regions played central roles in AMR of kidney transplantation. Importantly, the prognosis of AMR is the hotspot in the future. Noninvasive strategies like plasma and urine dd-cfDNA may be the most potential direction in the AMR field.


Asunto(s)
Trasplante de Riñón , Trasplantes , Bibliometría , Canadá
11.
J Colloid Interface Sci ; 650(Pt B): 1983-1992, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527603

RESUMEN

Developing a high-efficiency photoelectrochemical (PEC) electrode for the glycerol oxidation reaction (GOR) is important for producing valuable products. The PEC performance could be enhanced by rationally designing heterostructures with inhibited recombination of charge carriers. Nevertheless, the interface electronic structure of heterostructures has not been comprehensively analyzed. In this work, the PEC GOR performance of ZnIn2S4/TiO2 heterostructure photoanode showed 1.7 folds enhancement than that of pure TiO2 photoanode at 1.23 V vs. RHE. The ZnIn2S4/TiO2 heterostructure was simulated by constructing ZnIn2S4 on the TiO2 single crystal, which was beneficial for investigating the interface electronic structure of heterostructure. Single-particle spectroscopy demonstrated a significantly increased lifetime of charge carriers. Combined with the in-situ X-ray photoelectron spectroscopy, Kelvin probe force microscopy, work function, and electron paramagnetic resonance, the interface electronic structure of the ZnIn2S4/TiO2 heterostructure was proposed with a Z-scheme mechanism. This work provides a comprehensive strategy for analyzing the interface electronic structure of heterostructures.

12.
J Hazard Mater ; 459: 132315, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37604038

RESUMEN

Nanoplastic is increasing in environments and can address toxic effects on various organisms. Particle size, concentration, and surface functionalization most influence nanoplastic toxicity. Besides, nanoplastic can adsorb other contaminants (e.g., antibiotics) to aggravate its adverse effects. The combined effects of nanoplastics and antibiotics on planktonic/benthic microbial communities, however, are still largely unknown. In this study, the combined effects of polystyrene nanoplastic and ofloxacin on the structure, assembly, and metabolic activities of marine microbial communities were investigated based on amplicon sequencing data. The results mainly demonstrate that: (1) nanoplastic and ofloxacin have greater impacts on prokaryotic communities than eukaryotic ones; (2) niche breadths of planktonic prokaryotes and benthic eukaryotes were shrank with both high nanoplastic and ofloxacin concentrations; (3) increased ofloxacin mainly reduces nodes/edges of co-occurrence networks, while nanoplastic centralizes network modularity; (4) increased nanoplastic under high ofloxacin concentration induces more differential prokaryotic pathways in planktonic communities, while benthic communities are less influenced. The present work indicates that co-presence of nanoplastics and ofloxacin has synergistic combined effects on community structure shifts, niche breadth shrinking, network simplifying, and differential prokaryotic pathways inducing in marine microbial communities, suggesting nanoplastics and its combined impacts with other pollutions should be paid with more concerns.


Asunto(s)
Microbiota , Ofloxacino , Ofloxacino/toxicidad , Microplásticos/toxicidad , Poliestirenos/toxicidad , Antibacterianos/toxicidad , Plancton
14.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
15.
ACS Omega ; 8(23): 20823-20833, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332798

RESUMEN

In order to further understand the high-temperature reaction process and pyrolysis mechanism of hydrocarbon fuels, the high-temperature pyrolysis behavior of n-tetracosane (C24H50) was investigated in this paper via the reaction force field (ReaxFF) method-based molecular dynamics approach. There are two main types of initial reaction channels for n-heptane pyrolysis, C-C and C-H bond fission. At low temperatures, there is little difference in the percentage of the two reaction channels. With the temperature increase, C-C bond fission dominates, and a small amount of n-tetracosane is decomposed by reaction with intermediates. It is found that H radicals and CH3 radicals are widely present throughout the pyrolysis process, but the amount is little at the end of the pyrolysis. In addition, the distribution of the main products H2, CH4, and C2H4, and related reactions are investigated. The pyrolysis mechanism was constructed based on the generation of major products. The activation energy of C24H50 pyrolysis is 277.19 kJ/mol, obtained by kinetic analysis in the temperature range of 2400-3600 K.

16.
Clin Implant Dent Relat Res ; 25(5): 910-918, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37232110

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the efficacy of endoscope-controlled sinus floor augmentation through a mini-lateral window, compared with traditional lateral window approach. MATERIALS AND METHODS: This retrospective research included 19 patients and 20 augmented sinuses using lateral window approach with simultaneous implant placement (test group: a 3-4 mm round osteotomy; control group: a 10 × 8 mm rectangular osteotomy). Preoperatively (T0), immediately after surgery (T1), and 6 months postoperatively (T2), cone-beam computed tomography (CBCT) scans were obtained. Residual bone height (RBH), lateral window dimension (LWD), endo-sinus bone gain (ESBG), apical bone height (ABH), and bone density were measured. Intraoperative and postoperative complications were recorded. Patients' evaluation of pain first day after surgery and a week later was assessed by visual analog scale (VAS). RESULTS: No significant difference was found in ESBG, ABH between the two groups at T1, T2 or their changes from T1 to T2. However, the increase of bone density value in the test group was significantly higher than control group (356.28 ± 149.59 vs. 242.99 ± 129.54; p < 0.05). The sinus perforation rate of test and control group was 10% and 20%, respectively. The VAS score of the test group at the first day after surgery was significantly lower than control group (4.20 ± 1.03 vs. 5.60 ± 1.71; p < 0.05). CONCLUSIONS: Endoscope-controlled maxillary sinus floor augmentation through a mini-lateral window yield similar result with traditional approach in terms of bone height gain. The modified approach could facilitate new bone formation, reducing sinus perforation rate and postoperative pain.


Asunto(s)
Elevación del Piso del Seno Maxilar , Humanos , Elevación del Piso del Seno Maxilar/métodos , Estudios Retrospectivos , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía , Implantación Dental Endoósea/métodos , Trasplante Óseo/métodos
17.
Natl Sci Rev ; 10(6): nwad056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37181084

RESUMEN

The Zhurong rover of the Tianwen-1 mission landed in southern Utopia Planitia, providing a unique window into the evolutionary history of the Martian lowlands. During its first 110 sols, Zhurong investigated and categorized surface targets into igneous rocks, lithified duricrusts, cemented duricrusts, soils and sands. The lithified duricrusts, analysed by using laser-induced breakdown spectroscopy onboard Zhurong, show elevated water contents and distinct compositions from those of igneous rocks. The cemented duricrusts are likely formed via water vapor-frost cycling at the atmosphere-soil interface, as supported by the local meteorological conditions. Soils and sands contain elevated magnesium and water, attributed to both hydrated magnesium salts and adsorbed water. The compositional and meteorological evidence indicates potential Amazonian brine activities and present-day water vapor cycling at the soil-atmosphere interface. Searching for further clues to water-related activities and determining the water source by Zhurong are critical to constrain the volatile evolution history at the landing site.

18.
Microbiol Spectr ; 11(3): e0338922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37222598

RESUMEN

The microbial network of the soil-root continuum plays a key role in plant growth. To date, limited information is available about the microbial assemblages in the rhizosphere and endosphere of endangered plants. We suspect that unknown microorganisms in roots and soil play an important role in the survival strategies of endangered plants. To address this research gap, we investigated the diversity and composition of the microbial communities of the soil-root continuum of the endangered shrub Helianthemum songaricum and observed that the microbial communities and structures of the rhizosphere and endosphere samples were distinguishable. The dominant rhizosphere bacteria were Actinobacteria (36.98%) and Acidobacteria (18.15%), whereas most endophytes were Alphaproteobacteria (23.17%) as well as Actinobacteria (29.94%). The relative abundance of rhizosphere bacteria was higher than that in endosphere samples. Fungal rhizosphere and endophyte samples had approximately equal abundances of the Sordariomycetes (23%), while the Pezizomycetes were more abundant in the soil (31.95%) than in the roots (5.70%). The phylogenetic relationships of the abundances of microbes in root and soil samples also showed that the most abundant bacterial and fungal reads tended to be dominant in either the soil or root samples but not both. Additionally, Pearson correlation heatmap analysis showed that the diversity and composition of soil bacteria and fungi were closely related to pH, total nitrogen, total phosphorus, and organic matter, of which pH and organic matter were the main drivers. These results clarify the different patterns of microbial communities of the soil-root continuum, in support of the better conservation and utilization of endangered desert plants in Inner Mongolia. IMPORTANCE Microbial assemblages play significant roles in plant survival, health, and ecological services. The symbiosis between soil microorganisms and these plants and their interactions with soil factors are important features of the adaptation of desert plants to an arid and barren environment. Therefore, the profound study of the microbial diversity of rare desert plants can provide important data to support the protection and utilization of rare desert plants. Accordingly, in this study, high-throughput sequencing technology was applied to study the microbial diversity in plant roots and rhizosphere soils. We expect that research on the relationship between soil and root microbial diversity and the environment will improve the survival of endangered plants in this environment. In summary, this study is the first to study the microbial diversity and community structure of Helianthemum songaricum Schrenk and compare the diversity and composition of the root and soil microbiomes.


Asunto(s)
Ascomicetos , Suelo , Suelo/química , Filogenia , Microbiología del Suelo , Raíces de Plantas/microbiología , Plantas , Bacterias/genética , Hongos/genética
19.
Environ Toxicol ; 38(7): 1473-1483, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37087747

RESUMEN

Nephrotoxicity is a major side effect of cisplatin. Apoptosis, oxidative stress, inflammation, and the MAPK signaling pathway activation are concerned with the pathophysiology of cisplatin-induced acute kidney injury (AKI). Madecassoside (MA), an active constituent of Centella asiatica, has anti-oxidative and anti-inflammatory effects. The present research aim to investigate the underlying protective mechanisms of MA on cisplatin nephrotoxicity. Pretreatment of mice with MA markedly ameliorated cisplatin-induced renal tubular cell injury evidenced by the improvement of kidney function and kidney morphology and blocked upregulation of kidney injury biomarkers (kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)). Cisplatin-induced renal cell apoptosis, inflammation, and oxidative stress were also prevented by MA treatment. Consistent with the in vivo results, MA pretreatment attenuated cisplatin-induced renal cell apoptosis, oxidative stress, and inflammation. Transcriptome analysis using RNA-sequencing suggested that the MAPK signaling pathway was the most affected, and MA could inhibit cisplatin-induced MAPK signaling pathway activation in vivo and in vitro. In summary, MA treatment ameliorated cisplatin-induced renal tubular damage possibly by decreasing activation of the MAPK signaling pathway, suggesting its potential for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Triterpenos , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Apoptosis , Cisplatino/toxicidad , Inflamación/metabolismo , Riñón , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo
20.
Adv Mater ; 35(41): e2209215, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36972562

RESUMEN

Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium-tungsten bronze (Csx WO3 ) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5-10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA