Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Food Chem ; 462: 140776, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241687

RESUMEN

The inability to integrate detection and disinfection hindered building a unified pathogen monitoring platform, risking secondary contamination. Herein, a novel "four - in - one" platform for monitoring foodborne Listeria monocytogenes (L. monocytogenes) was presented. The magnetic daptomycin - functionalized Fe3O4 (Dap/Fe3O4) could selectively bind to L. monocytogenes, enhancing detection accuracy. The separated bacteria were captured by aptamers - functionalized Fe - doped - silica nanoparticles (Apt/Fe@SiNPs) for tri - mode detection. Besides fluorescence, the Apt/Fe@SiNPs converted 3,3',5,5' - tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) via peroxidase activity, allowing colorimetric and subsequent photothermal detection upon irradiation, as low as 2.06 CFU/mL. Magnetic - induced aggregation of Apt/Fe@SiNPs generated toxic hydroxyl radicals around L. monocytogenes, achieving ∼99.6% disinfection. Furthermore, the biofilm of L. monocytogenes was effectively inhibited by the action of hydroxyl radicals. The platform might offer a promising prospect to control L. monocytogenes in food industries.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Desinfección/instrumentación , Desinfección/métodos , Nanopartículas/química , Colorimetría
2.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39320138

RESUMEN

The electromagnetic environment faced by modern radar is becoming increasingly complex. One effective means to improve the performance of radar systems is testing in an anti-jamming ability test chamber, where the increased complexity has also led to higher performance requirements for radar jamming simulators. Based on the requirements for modern radar system testing, this paper presents a study of a large-bandwidth real-time radar jamming simulator and describes its overall design architecture; the simulator covers the L-Ku and Ka frequency bands and the instantaneous bandwidth is ≥2 GHz, which means that the system is able to simulate 11 interference patterns. Synchronous control of the system is realized in 1 ms through use of the reflection memory interrupt mechanism, the synchronous pulse signal mechanism, synchronous timing design, and a real-time control software architecture. An overall design scheme for real-time simulation of a radar target jamming echo is given and baseband signal processing resources are saved through information preprocessing, a large-capacity high-speed storage board is designed to improve the data reading speed, a multiphase filtering structure is used to achieve high sampling rates and save hardware resources, and a high-speed parallel computing method is used to improve computing efficiency; the actual measured baseband signal processing time is less than 500 ns. Finally, a measurement platform is built, and the main interference patterns are verified through experimental measurements.

3.
Food Chem ; 463(Pt 1): 141107, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265402

RESUMEN

Rapid and accurate detection of Burkholderia gladioli (B. gladioli) and effective sterilization are crucial for ensuring food safety. Hence, a novel "loong frolic pearls" platform based on platinum-based fluorescent nanozymes (Pt-OCDs) and strand exchange amplification (SEA) was reported. Magnetic nanoparticles were modified on primer SEAF, while Pt-OCDs were covalently coupled with primer SEA-R. The highly efficient amplification capability of SEA permitted the accumulation of a large number of double-labeled amplicons. After magnetic adsorption, the supernatant was detected in reverse direction to collect colorimetric-fluorescence-photothermal signal values, enabling ultra-precise detection within 1 h. Furthermore, the Pt-based multifunctional nanoplatform generated abundant •OH and 1O2, which synergistically attacked B. gladioli and its biofilm, resulting in significant bactericidal efficacy within 30 min. This "triple-detection and double-sterilization" platform has been successfully applied in the field of food analysis with good recovery rates and immediate control over B. gladioli, thus demonstrating promising prospects for broad applications.

4.
J Am Chem Soc ; 146(36): 25343-25349, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39196804

RESUMEN

Sulfur-based aqueous batteries (SABs) are promising for safe, low-cost, and high-capacity energy storage. However, the low output voltage of sulfur cannot meet the demands of high-energy cathode applications due to its intrinsic negative potential (E0 = -0.51 V vs SHE) of low-valent polysulfide redox (S2-/S0). Here, instead of relying on traditional aqueous polysulfide redox, for the first time, we demonstrate a high-valent thiosulfate redox (S2O32-/S4O62-) electrochemistry, exhibiting positive redox potential (E0 > 0 V vs SHE) and reversible cation storage in aqueous environment. Operando X-ray absorption fine structure spectroscopy, in situ Raman spectroscopy, and density functional theory calculations reveal the high reversibility and dynamic charge transfer process of high-valent thiosulfate redox. Significantly, the aqueous thiosulfate redox exhibits a high operating voltage of approximately 1.4 V, a reversible capacity of 193 Ah L-1, and a long cycling life of over 1000 cycles (99.6% capacity retention). This work provides new insights into the high-valent S-based electrochemistry and opens a new pathway to achieve energetic aqueous batteries.

5.
Small ; : e2406110, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113670

RESUMEN

In this study, state-of-the-art on-line pyrolysis MS (OP-MS) equipped with temperature-controlled cold trap and on-line pyrolysis GC/MS (OP-GC/MS) injected through high-vacuum negative-pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode-electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiCx anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R-H+ (e.g., HF, ROH, etc.) species derived from electrolyte decomposition would continue to react with Li/LiCx to generate H2. Up to above 200 °C, the O2 would release from the charged NCM cathode and organic radicals would be consumed/oxidized by evolved O2 to form COx, H2O, and more corrosive HF. On the contrary, charged LFP cathode does not present obvious O2 evolution during heating process and the unreacted flammable/toxic organic species would exit in the form of high temperature/high-pressure (HT/HP) vapors within batteries, indicating higher potential safety risks. Additionally, the in depth understanding of the TR mechanism outlined above provides a clear direction for the design/modification of thermostable electrodes and non-flammable electrolytes for safer batteries.

6.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141606

RESUMEN

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

7.
PLoS One ; 19(8): e0305468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39110691

RESUMEN

OBJECTIVE: The objective of this study was to identify the risk factors that influence metastasis and prognosis in patients with nodular melanoma (NM), as well as to develop and validate a prognostic model using artificial intelligence (AI) algorithms. METHODS: The Surveillance, Epidemiology, and End Results (SEER) database was queried for 4,727 patients with NM based on the inclusion/exclusion criteria. Their clinicopathological characteristics were retrospectively reviewed, and logistic regression analysis was utilized to identify risk factors for metastasis. This was followed by employing Multilayer Perceptron (MLP), Adaptive Boosting (AB), Bagging (BAG), logistic regression (LR), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGB) algorithms to develop metastasis models. The performance of the six models was evaluated and compared, leading to the selection and visualization of the optimal model. Through integrating the prognostic factors of Cox regression analysis with the optimal models, the prognostic prediction model was constructed, validated, and assessed. RESULTS: Logistic regression analyses identified that marital status, gender, primary site, surgery, radiation, chemotherapy, system management, and N stage were all independent risk factors for NM metastasis. MLP emerged as the optimal model among the six models (AUC = 0.932, F1 = 0.855, Accuracy = 0.856, Sensitivity = 0.878), and the corresponding network calculator (https://shimunana-nm-distant-m-nm-m-distant-8z8k54.streamlit.app/) was developed. The following were examined as independent prognostic factors: MLP, age, marital status, sequence number, laterality, surgery, radiation, chemotherapy, system management, T stage, and N stage. System management and surgery emerged as protective factors (HR < 1). To predict 1-, 3-, and 5-year overall survival (OS), a nomogram was created. The validation results demonstrated that the model exhibited good discrimination and consistency, as well as high clinical usefulness. CONCLUSION: The developed prediction model more effectively reflects the prognosis of patients with NM and differentiates between the risk level of patients, serving as a useful supplement to the classical American Joint Committee on Cancer (AJCC) staging system and offering a reference for clinically stratified individualized treatment and prognosis prediction. Furthermore, the model enables clinicians to quantify the risk of metastasis in NM patients, assess patient survival, and administer precise treatments.


Asunto(s)
Inteligencia Artificial , Melanoma , Humanos , Melanoma/patología , Melanoma/mortalidad , Femenino , Masculino , Pronóstico , Persona de Mediana Edad , Factores de Riesgo , Anciano , Estudios Retrospectivos , Metástasis de la Neoplasia , Programa de VERF , Adulto , Algoritmos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/terapia , Modelos Logísticos
8.
J Affect Disord ; 362: 485-492, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009318

RESUMEN

BACKGROUND: Major depression (MD) is recurrent and devastating mental disease with a high worldwide prevalence. Mounting evidence suggests neuroinflammation triggers cellular immune dysregulation, characterized by increased proportions of circulating monocytes, and T helper 17 cells and proinflammatory cytokines, thereby increasing susceptibility to MD. However, there is ambiguity in the findings of clinical studies that investigate CD4+ T regulatory (Treg) cells in MD. METHODS: The proportion of CD4+ Treg cell from blood mononuclear cells was examined using flow cytometry in healthy controls (HCs: n = 96) and patients with first (FEMD: n = 62) or recurrent (RMD: n = 41) disease episodes of MD at baseline (T0; hospital admission) and after a two-week antidepressant treatment (T14). All participants underwent comprehensive neuropsychological assessments. RESULTS: The initial scores on emotional assessments in patients with MD significantly differed from those of HCs. Both FEMD and RMD patients exhibited a significant decrease in CD4+ Treg cell proportion at baseline compared to HCs. Treg cell proportion rose significantly from T0 to T14 in FEMD patients, who responded to antidepressant therapy, whereas no significant changes were observed in FEMD patients in non-response as well as RMD patients. The improvement of 24-item Hamilton Depression Scale was correlate with changes of Treg cell proportion from T0 to T14 in FEMD patients in response, and the change in Treg cell proportion over a 14-day period exhibited an AUC curve of 0.710. CONCLUSIONS: A decrease in the proportion of CD4+ Treg cells points towards immune system abnormalities in patients with MD. Furthermore, our finding suggests that the immune activation state varies across different stages of depression.


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Linfocitos T Reguladores , Humanos , Trastorno Depresivo Mayor/inmunología , Trastorno Depresivo Mayor/tratamiento farmacológico , Masculino , Femenino , Adulto , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Antidepresivos/uso terapéutico , Persona de Mediana Edad , Citometría de Flujo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38843413

RESUMEN

Objective: This study aimed to analyze the impact of PRR11 protein expression levels on the prognosis of patients with diabetes mellitus and pancreatic cancer. Methods: Immunohistochemical staining was performed to detect the expression levels of PRR11 protein in cancerous tissues of 70 pancreatic cancer patients, including 45 patients with diabetes mellitus (Group A) and 25 patients without diabetes mellitus (Group B). Patients' blood glucose, lipid profiles, and glycemic control status were compared between the groups. Survival curves were plotted to explore the impact of PRR11 protein expression levels on the prognosis of patients with diabetes mellitus and pancreatic cancer. Results: The positive rate of PRR11 protein expression in Group A patients (86.67%) was significantly higher than in Group B patients (52.00%), P < .05. Group A patients exhibited significantly higher levels of fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), and glycated hemoglobin (HbAlc) compared to Group B patients (P < .05). Interestingly, the expression levels of PRR11 in cancerous tissues were positively correlated with FBG, TC, TG, and HbAlc levels (P < .05). The positive rate of PRR11 protein expression in patients with poor glycemic control (93.75%) was significantly higher than in patients with good glycemic control (53.85%), P < .05. Notably, the survival rate of PRR11 protein-positive patients was significantly lower than that of negative patients (P < .05). Conclusion: The finding highlights that the positive expression of PRR11 protein in patients with diabetes mellitus and pancreatic cancer is associated with a poor prognosis. It suggests that PRR11 may play a role in the occurrence and development of pancreatic cancer and could serve as a potential predictive marker and therapeutic target. However, further research is warranted to explore the functional mechanisms and pathways of PRR11 to better understand its role in pancreatic cancer, and develop personalized therapies.

10.
Curr Med Chem ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38831674

RESUMEN

Intervertebral disc degeneration (IDD) is a common musculoskeletal system disease, which is one of the most important causes of low back pain. Despite the high prevalence of IDD, current treatments are limited to relieving symptoms, and there are no effective therapeutic agents that can block or reverse the progression of IDD. Oxidative stress, the result of an imbalance between the production of reactive oxygen species (ROS) and clearance by the antioxidant defense system, plays an important role in the progression of IDD. Polyphenols are antioxidant compounds that can inhibit ROS production, which can scavenge free radicals, reduce hydrogen peroxide production, and inhibit lipid oxidation in nucleus pulposus (NP) cells and IDD animal models. In this review, we discussed the antioxidant effects of polyphenols and their regulatory role in different molecular pathways associated with the pathogenesis of IDD, as well as the limitations and future prospects of polyphenols as a potential treatment of IDD.

11.
Chembiochem ; 25(15): e202400257, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847484

RESUMEN

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Agua , Nitrorreductasas/metabolismo , Colorantes Fluorescentes/química , Agua/química , Carbocianinas/química , Solubilidad , Estructura Molecular
12.
PLoS One ; 19(6): e0302700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941343

RESUMEN

Causation and effectuation are two fundamental decision-making logics that managers use for crucial firm strategic decisions. However, existing research has yet to agree on the relationship between the two logics, supporting both the substitution and complementarity of causation and effectuation in influencing firm performance. This leaves us with a puzzle: How do causation and effectuation combine in balance to improve firm performance? To address the gap, we utilize a fuzzy set qualitative comparative analysis (fsQCA) with data collected from 344 small to medium-sized enterprises (SMEs) in China to uncover the dynamic relationships between the two logics. Our findings indicate that causation or effectuation alone is insufficient to achieve superior firm performance. By distinguishing between four dimensions of effectuation, we identify three types of configurations for high performance: (1) causation with promotion-focused effectuation principles; (2) causation with prevention-focused effectuation principles; (3) causation with hybrid-focused effectuation principles. More importantly, we find that the effectiveness of the configurations depends on the firm development stage. Our findings provide SMEs with practical insights into how to effectively choose their decision-making logic when faced with different firm growth challenges.


Asunto(s)
Toma de Decisiones , Humanos , China , Lógica Difusa
13.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869216

RESUMEN

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

14.
J Neurochem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761015

RESUMEN

Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.

15.
J Ovarian Res ; 17(1): 78, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600539

RESUMEN

BACKGROUND: This study investigated the association between Anti-Müllerian Hormone (AMH) and relevant metabolic parameters and assessed its predictive value in the clinical diagnosis of polycystic ovarian syndrome (PCOS). METHODS: A total of 421 women aged 20-37 years were allocated to the PCOS (n = 168) and control (n = 253) groups, and their metabolic and hormonal parameters were compared. Spearman correlation analysis was conducted to investigate associations, binary logistic regression was used to determine PCOS risk factors, and receiver operating characteristic (ROC) curves were generated to evaluate the predictive value of AMH in diagnosing PCOS. RESULTS: The PCOS group demonstrated significantly higher blood lipid, luteinizing hormone (LH), and AMH levels than the control group. Glucose and lipid metabolism and hormonal disorders in the PCOS group were more significant than in the control group among individuals with and without obesity. LH, TSTO, and AMH were identified as independent risk factors for PCOS. AMH along with LH, and antral follicle count demonstrated a high predictive value for diagnosing PCOS. CONCLUSION: AMH exhibited robust diagnostic use for identifying PCOS and could be considered a marker for screening PCOS to improve PCOS diagnostic accuracy. Attention should be paid to the effect of glucose and lipid metabolism on the hormonal and related parameters of PCOS populations.


Asunto(s)
Hormona Antimülleriana , Síndrome del Ovario Poliquístico , Femenino , Humanos , Hormona Antimülleriana/sangre , Glucosa/metabolismo , Hormona Luteinizante/sangre , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Sensibilidad y Especificidad , Adulto
16.
Sci Total Environ ; 928: 172321, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604373

RESUMEN

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

17.
Plant Physiol Biochem ; 210: 108564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555719

RESUMEN

Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.


Asunto(s)
Cobre , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Cobre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lignina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pared Celular/metabolismo
18.
Cancer Med ; 13(5): e7026, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477492

RESUMEN

BACKGROUND: Differential diagnosis of pancreatic solid lesion (PSL) and prognosis of pancreatic cancer (PC) is a clinical challenge. We aimed to explore the differential diagnostic value of sound speed (SS) obtained from endoscopic ultrasonography (EUS) in PSL and the prognostic value of SS in PC. METHODS: Patients with PSL in The Third Xiangya Hospital of Central South University from March 2019 to October 2019 were prospectively enrolled, who obtained SS from PSL. Patients were divided into the PC group and the pancreatic benign lesion (PBL) group. SS1 is the SS of lesions and SS2 is the SS of normal tissues adjacent to lesions. Ratio1 is equal to SS1 divided by SS2 of PSL (ratio1 = SS1/SS2). RESULTS: Eighty patients were enrolled (24 PBL patients, 56 PC patients). SS1 and ratio1 in PC group were higher compared with PBL group (SS1:1568.00 vs. 1550.00, Z = -2.066, p = 0.039; ratio1: 1.0110 vs. 1.0051, Z = -3.391, p = 0.001). The SS1 in PC (Z = -6.503, p < 0.001) was higher compared to SS2. In the nonsurgical group of PC, low ratio1 predicted high overall survival (OS) (7.000 months vs. 4.000 months; p = 0.039). In the surgical group of PC, low SS1 was associated with low median OS (4.000 months vs. 12.000 months; p = 0.033). CONCLUSIONS: SS plays a vital role in distinguishing between PBL and PC. Higher SS1 and ratio1 obtained by EUS are more related to PC than PBL. In PC patients, high SS1 may predict pancreatic lesions. In the nonsurgical group of PC, low ratio1 may predict high OS. However, in the surgical group of PC, low SS1 may predict low OS.


Asunto(s)
Endosonografía , Neoplasias Pancreáticas , Humanos , Diagnóstico Diferencial , Páncreas/patología , Neoplasias Pancreáticas/patología , Pronóstico
19.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38441399

RESUMEN

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

20.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544143

RESUMEN

How to obtain internal cavity features and perform image matching is a great challenge for laparoscopic 3D reconstruction. This paper proposes a method for detecting and associating vascular features based on dual-branch weighted fusion vascular structure enhancement. Our proposed method is divided into three stages, including analyzing various types of minimally invasive surgery (MIS) images and designing a universal preprocessing framework to make our method generalized. We propose a Gaussian weighted fusion vascular structure enhancement algorithm using the dual-branch Frangi measure and MFAT (multiscale fractional anisotropic tensor) to address the structural measurement differences and uneven responses between venous vessels and microvessels, providing effective structural information for vascular feature extraction. We extract vascular features through dual-circle detection based on branch point characteristics, and introduce NMS (non-maximum suppression) to reduce feature point redundancy. We also calculate the ZSSD (zero sum of squared differences) and perform feature matching on the neighboring blocks of feature points extracted from the front and back frames. The experimental results show that the proposed method has an average accuracy and repeatability score of 0.7149 and 0.5612 in the Vivo data set, respectively. By evaluating the quantity, repeatability, and accuracy of feature detection, our method has more advantages and robustness than the existing methods.


Asunto(s)
Algoritmos , Laparoscopía , Procedimientos Quirúrgicos Mínimamente Invasivos , Venas , Microvasos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...