Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 339: 122216, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823901

RESUMEN

Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.


Asunto(s)
Heparina de Bajo-Peso-Molecular , Control de Calidad , Heparina de Bajo-Peso-Molecular/química , Humanos , Animales , Anticoagulantes/química , Anticoagulantes/farmacología
2.
Bioorg Chem ; 148: 107436, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735265

RESUMEN

BACKGROUND: Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY: This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS: The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS: FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION: The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Camptotecina , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Camptotecina/farmacología , Camptotecina/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratones Desnudos , Células Tumorales Cultivadas , Línea Celular Tumoral
3.
Langmuir ; 40(22): 11766-11774, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38762782

RESUMEN

Creating dual-mode patterns in the same area of the material is an advanced method to increase the dimension of information storage, improve the level of encryption security, and promote the development of encoding technology. However, in situ, different patterns may lead to serious mutual interference in the process of manufacturing and usage. New materials and patterning techniques are essential for the advancement of noninterfering dual-mode patterns. Herein, noninterfering dual-mode patterns are demonstrated by combining the structural color and chromatic polarization, which is designed with an azobenzene-containing linear liquid crystal copolymer featuring a photofluidization effect. On the one hand, structural color patterns are imprinted via silicon templates with periodic microstructures after a UV-light-induced local transition of the polymer surface from a glassy to rubbery state. On the other hand, different polarization patterns based on the local photoinduced orientation of mesogens are created within the photofluidized region by the Weigert effect. Especially, the secondary imprinting is used to eliminate the partial damage to the structural color patterns during writing of the polarization patterns, thus obtaining dual-mode patterns without interference. This study provides a blueprint for the creation of advanced materials and sophisticated photopatterning techniques with potential cross-industry applications.

4.
ACS Appl Mater Interfaces ; 16(12): 15405-15415, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488829

RESUMEN

Deformable liquid crystal polymers (LCPs) driven by more than one external stimulus have received extensive attention in fields ranging from multifunctional soft robots to bionic actuators. Combining responsive liquid crystal with nonmesogenic responsive groups within polymer offers a versatile way to obtain multiresponsive LCPs. However, the incorporation of nonmesogenic responsive groups causes interruption in the assembly of mesogens and brings a challenge to the alignment of LCPs. Herein, a new method is put forward to facilitate uniform mesogen alignment by exerting water vapor in the film preparation process. Using this method, vapor-assisted alignment, the homeotropic alignment of azobenzene mesogens is achieved in a copolymer containing nonmesogenic poly(ethylene glycol) (PEG). The obtained copolymer films present photodeformation brought by azobenzene isomerization and humidity-responsive deformation resulting from the asymmetric swelling of film surfaces. The dual-responsive smart "blinds" and bionic flower actuators are fabricated to demonstrate the integration of the two different stimuli. This work is anticipated to provide a feasible alignment method for multiresponsive LCPs, showing the potential applications in soft robots, sensors, and biomimetic devices.

5.
Microbiome ; 11(1): 144, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37370187

RESUMEN

BACKGROUND: Marine prokaryotes are a rich source of novel bioactive secondary metabolites for drug discovery. Recent genome mining studies have revealed their great potential to bio-synthesize novel secondary metabolites. However, the exact biosynthetic chemical space encoded by the marine prokaryotes has yet to be systematically evaluated. RESULTS: We first investigated the secondary metabolic potential of marine prokaryotes by analyzing the diversity and novelty of the biosynthetic gene clusters (BGCs) in 7541 prokaryotic genomes from cultivated and single cells, along with 26,363 newly assembled medium-to-high-quality genomes from marine environmental samples. To quantitatively evaluate the unexplored biosynthetic chemical space of marine prokaryotes, the clustering thresholds for constructing the biosynthetic gene cluster and molecular networks were optimized to reach a similar level of the chemical similarity between the gene cluster family (GCF)-encoded metabolites and molecular family (MF) scaffolds using the MIBiG database. The global genome mining analysis demonstrated that the predicted 70,011 BGCs were organized into 24,536 mostly new (99.5%) GCFs, while the reported marine prokaryotic natural products were only classified into 778 MFs at the optimized clustering thresholds. The number of MF scaffolds is only 3.2% of the number of GCF-encoded scaffolds, suggesting that at least 96.8% of the secondary metabolic potential in marine prokaryotes is untapped. The unexplored biosynthetic chemical space of marine prokaryotes was illustrated by the 88 potential novel antimicrobial peptides encoded by ribosomally synthesized and post-translationally modified peptide BGCs. Furthermore, a sea-water-derived Aquimarina strain was selected to illustrate the diverse biosynthetic chemical space through untargeted metabolomics and genomics approaches, which identified the potential biosynthetic pathways of a group of novel polyketides and two known compounds (didemnilactone B and macrolactin A 15-ketone). CONCLUSIONS: The present bioinformatics and cheminformatics analyses highlight the promising potential to explore the biosynthetic chemical diversity of marine prokaryotes and provide valuable knowledge for the targeted discovery and biosynthesis of novel marine prokaryotic natural products. Video Abstract.


Asunto(s)
Productos Biológicos , Genómica , Filogenia , Biología Computacional , Metabolismo Secundario/genética , Vías Biosintéticas/genética
6.
ACS Macro Lett ; 12(7): 921-927, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37364290

RESUMEN

The integration of different shape manipulation could greatly expand the versatility and functionality of smart materials, for which the achievement of synergism of different shape control is crucial. Here, we seek to create one kind of polyimide with integrated multiple shape manipulations by constructing the chemical network bearing azobenzene as a side chain. Trifunctional cross-linkers serving as net points of the chemical network render polyimide thermal-induced shape memory effects, which enables shape transformation. Azobenzene as a photoresponsive group is employed to achieve the photofixity and reversible photodeformability. Such photosensitive behaviors are independent of molecular prealignment and remain available after thermally shaping and fixing. As a result, these noninterfering performances induced by heat and light allow us to arbitrarily combine them to meet different needs. By integrating different shape manipulations, various shape changes and functional execution are conveniently achieved. The combination of the shape memory effect with photofixity enables the setting of diverse shapes, while the merging of it with reversible deformation facilitates the construction of actuators capable of executing functions. This study provides a new approach for the preparation of multifunctional actuators and has potential applications in the field of intelligent drivers.

7.
Eur J Med Chem ; 257: 115462, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37229830

RESUMEN

P-glycoprotein (P-gp) is one of the drug efflux transporters that triggers multidrug resistance (MDR) in cells. Herein, by utilizing the strategies of active skeleton splicing and structural optimization on the lead compound 5 m, a total of 50 novel 2,5-disubstituted furan derivatives were designed, synthesized, and screened for P-gp inhibitory activity. The structure-activity relationship analysis enabled the identification of an important pharmacophore N-phenylbenzamide, which resulted in the discovery of a promising drug lead compound Ⅲ-8. Ⅲ-8 possesses broad-spectrum reversal activity and low toxicity in MCF-7/ADR cells. Western blot and Rh123 accumulation assay demonstrated that Ⅲ-8 displayed the reversal activity by inhibiting P-gp efflux. Molecular docking analysis indicated a potent affinity of Ⅲ-8 to P-gp by forming H-bond interactions with residues Asn 721 and Met 986. Ⅲ-8 was determined to be a highly effective and safe P-gp inhibitor in an MCF-7/ADR xenograft mouse model.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Resistencia a Múltiples Medicamentos , Animales , Humanos , Ratones , Subfamilia B de Transportador de Casetes de Unión a ATP , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Furanos/farmacología , Células MCF-7 , Simulación del Acoplamiento Molecular , Glicoproteínas/química , Glicoproteínas/metabolismo
8.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175232

RESUMEN

α-Glucosidase (AGS) inhibitors have been regarded as an ideal target for the management of type 2 diabetes mellitus (T2DM) since they can maintain an acceptable blood glucose level by delaying the digestion of carbohydrates and diminishing the absorption of monosaccharides. In the process of our endeavor in mining AGS inhibitors from natural sources, the culture broth of two mangrove-derived actinomycetes Streptomyces sp. WHUA03267 and Streptomyces sp. WHUA03072 exhibited an apparent inhibitory activity against AGS. A subsequent chemical investigation into the two extracts furnished 28 secondary metabolites that were identified by spectroscopic methods as two previously undescribed linear polyketides 1-2, four benzenoid ansamycins 3-6, fourteen cyclodipeptides 7-18, one prenylated indole derivative 19, two fusicoccane-type diterpenoids 20-21, two hydroxamate siderophore 22-23, and five others 24-28. Among all of the isolates, 11 and 24 were obtained from actinomycetes for the first time, while 20-21 had never been reported to occur in a marine-derived microorganism previously. In the in vitro AGS inhibitory assay, compounds 3, 8, 9, 11, 14, 16, and 17 exhibited potent to moderate activity with IC50 values ranging from 35.76 ± 0.40 to 164.5 ± 15.5 µM, as compared with acarbose (IC50 = 422.3 ± 8.4 µM). The AGS inhibitory activity of 3, 9, 14, 16, and 17 was reported for the first time. In particular, autolytimycin (3) represented the first ansamycin derivative reported to possess the AGS inhibitory activity. Kinetics analysis and molecular docking were performed to determine the inhibition types and binding modes of these inhibitors, respectively. In the MTT assay, 3, 8, 9, 11, 14, 16, and 17 exhibited no apparent cytotoxicity to the human normal hepatocyte (LO2) cells, suggesting satisfactory safety of these AGS inhibitors.


Asunto(s)
Actinobacteria , Diabetes Mellitus Tipo 2 , Streptomyces , Humanos , Inhibidores de Glicósido Hidrolasas/química , Actinobacteria/metabolismo , Actinomyces/metabolismo , Simulación del Acoplamiento Molecular , Streptomyces/metabolismo , alfa-Glucosidasas/metabolismo , Estructura Molecular
9.
J Med Chem ; 66(8): 5550-5566, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37011035

RESUMEN

A proposed strategy to overcome multidrug resistance (MDR) of anticancer drugs in chemotherapy is to disable the efflux function of P-glycoprotein (P-gp). In this study, based on ring-merging and fragment-growing strategies, 105 novel benzo five-membered heterocycle derivatives were designed, synthesized, and screened. Exploration of the structure-activity relationship (SAR) led to the identification of d7 with low cytotoxicity and promising reversal activity to doxorubicin in MCF-7/ADR cells. Furthermore, the mechanism studies revealed that the reversal activity of d7 stemmed from the inhibition of P-gp efflux. Molecular docking further clarified the observed trends in SAR with d7 displaying potent affinity to P-gp. Additionally, coadministration of d7 with doxorubicin achieved stronger antitumor activity in a xenograft model than doxorubicin alone. These results suggest that d7 is a potential MDR reveal agent acting as a P-gp inhibitor and provides guidelines for the future development of new P-gp inhibitors.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Doxorrubicina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP
10.
J Nat Prod ; 86(4): 1120-1127, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912649

RESUMEN

Kutzneria is a rare genus of Actinobacteria that harbors a variety of secondary metabolite gene clusters and produces several interesting types of bioactive secondary metabolites. Recent efforts have partially elucidated the biosynthetic pathways of some of these bioactive natural products, suggesting the diversity and specificity of secondary metabolism within this genus. Here, we summarized the chemical structures, biosynthetic pathways, and key metabolic enzymes of the secondary metabolites isolated from Kutzneria strains. In-depth comparative genomic analysis of all six available high-quality Kutzneria genomes revealed that the majority (77%) of the biosynthetic gene cluster families of Kutzneria were untapped and identified homologues of key metabolic enzymes in the putative gene clusters, including cytochrome P450s, halogenases, and flavin-dependent N-hydroxylases. The present study suggests that Kutzneria exhibits great potential to synthesize novel secondary metabolites, encodes a variety of valuable metabolic enzymes, and also provides valuable information for the targeted discovery and biosynthesis of novel natural products from Kutzneria.


Asunto(s)
Actinobacteria , Actinomycetales , Productos Biológicos , Metabolismo Secundario , Actinobacteria/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Familia de Multigenes , Productos Biológicos/metabolismo , Filogenia
11.
Angew Chem Int Ed Engl ; 62(21): e202300699, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36949365

RESUMEN

Post-polymerization modification (PPM) offers a versatile approach for engineering multifunctional polymers, but this advantage has not been fully exploited to fabricate multifunctional liquid crystal polymers (LCPs). Here, we design a facile synthetic approach towards multifunctional LCP by combining the ring-opening metathesis polymerization (ROMP) with PPM, in which ROMP helps to prepare a reactive LCP precursor with high molecular weight, and PPM provides a facilitation to introduce functional groups into the precursor. Consequently, a photo- and humidity-responsive linear LCP (LLCP) is demonstrated to show the potential of this synthetic strategy to diversify functions of the LCPs. Under light irradiation and humidity changes, the deformation modes of the LLCP films are converted to complex shapes (bending, twisting, and curling). The obtained dual-responsive LLCP with high molecular weight possesses excellent processability and recyclability, making it possible to construct 3D shape actuators with programmable deformation behaviors under light/humidity.

12.
Foods ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766192

RESUMEN

Saccharina japonica polysaccharides exhibit great potential to be developed as anti-obesity and prebiotic health products, but the underlying mechanism has not been adequately addressed. In this study, we investigated the potential mechanism of a S. japonica polysaccharide fraction (SjC) in preventing high-fat-diet (HFD)-induced obesity in mice using 16S rRNA gene and shotgun metagenomic sequencing analysis. SjC was characterized as a 756 kDa sulfated polysaccharide and 16 weeks of SjC supplementation significantly alleviated HFD-induced obesity, insulin resistance, and glucose metabolism disorders. The 16S rRNA and metagenomic sequencing analysis demonstrated that SjC supplementation prevented gut microbiota dysbiosis mainly by regulating the relative abundance of Desulfovibrio and Akkermansia. Metagenomic functional profiling demonstrated that SjC treatment predominantly suppressed the amino acid metabolism of gut microbiota. Linking of 16S rRNA genes with metagenome-assembled genomes indicated that SjC enriched at least 22 gut bacterial species with fucoidan-degrading potential including Desulfovibrio and Akkermansia, which showed significant correlations with bodyweight. In conclusion, our results suggest that SjC exhibits a promising potential as an anti-obesity health product and the interaction between SjC and fucoidan-degrading bacteria may be associated with its anti-obesity effect.

13.
Eur J Med Chem ; 248: 115092, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36645980

RESUMEN

The co-administration of anticancer drugs and P-glycoprotein (P-gp) inhibitors was a treatment strategy to surmount multidrug resistance (MDR) in anticancer chemotherapy. In this study, novel phenylfuran-bisamide derivatives were designed as P-gp inhibitors based on target-based drug design, and 31 novel compounds were synthesized and screened on MCF-7/ADR cells. The result of bioassay revealed that compound y12d exhibited low cytotoxicity and promising MDR reversal activity (IC50 = 0.0320 µM, reversal fold = 1163.0), 3.64-fold better than third-generation P-gp inhibitor tariquidar (IC50 = 0.1165 µM, reversal fold = 319.3). The results of Western blot and rhodamine 123 accumulation verified that compound y12d exhibited excellent MDR reversal activity by inhibiting the efflux function of P-gp but not expression. Furthermore, molecular docking showed that compound y12d bound to target P-gp by forming the double H-bond interactions with residue Gln 725. These results suggest that compound y12d might be a potential MDR reveal agent acting as a P-gp inhibitor in clinical therapeutics, and provide insight into design strategy and skeleton optimization for the development of P-gp inhibitors.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Doxorrubicina , Humanos , Células MCF-7 , Doxorrubicina/farmacología , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos
14.
Soft Matter ; 19(5): 999-1007, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645083

RESUMEN

Photodeformable liquid crystal polymers (LCPs) exhibit shape changes of different modes like bending, twisting, and oscillation, which depend on the orientation of liquid crystals. However, it is challenging to create a three-dimensional (3D) actuator with distinct actuation modes due to the difficulty of local orientation in a complex bulk architecture. Here we propose a strategy based on athermal photo-welding to integrate different orientations into a single flexible actuator by the photofluidization of azobenzene-containing linear LCPs. Stretch-induced uniaxial films are cut in different directions and subsequently welded via local photofluidization, during which the LCP transitions from a high-modulus glassy state to a rubbery state upon photoisomerization of azobenzene at room temperature. As a consequence, a cucumber vine-like structure with the opposite handedness and a lifting gripper are constructed by such a cut-and-weld process, demonstrating diverse deformation modes of winding, unwinding, and curling. This strategy provides an athermal process for the fabrication of seamless 3D flexible actuators without structural defects, which have potential applications in micromechanical systems, soft robotics, and artificial muscles.

15.
Environ Microbiol Rep ; 14(6): 917-925, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35998886

RESUMEN

Photorhabdus, the symbiotic bacteria of Heterorhabditis nematodes, has been reported to possess many non-ribosomal peptide synthetase (NRPS) biosynthesis gene clusters (BGCs). To provide an in-depth assessment of the non-ribosomal peptide biosynthetic potential of Photorhabdus, we compared the distribution of BGCs in 81 Photorhabdus strains, confirming the predominant presence (44.80%) of NRPS BGCs in Photorhabdus. All 990 NRPS BGCs were clustered into 275 gene cluster families (GCFs) and only 13 GCFs could be annotated with known BGCs, suggesting their great diversity and novelty. These NRPS BGCs encoded 351 novel peptides containing more than four amino acids, and 173 of them showed high sequence similarity to known BGCs encoding bioactive peptides, implying the promising potential of Photorhabdus to produce valuable peptides. Sequence similarity networking of adenylation (A-) domains suggested that the substrate specificity of A-domains was not directly correlated with the sequence similarity. The molecular similarity network of predicted metabolite scaffolds of NRPS BGCs and reported peptides from Photorhabdus and a relevant database demonstrated that the non-ribosomal peptide biosynthetic potential of Photorhabdus was largely untapped and revealed the core peptides deserving intensive studies. Our present study provides valuable information for the targeted discovery of novel non-ribosomal peptides from Photorhabdus.


Asunto(s)
Nematodos , Photorhabdus , Animales , Photorhabdus/genética , Photorhabdus/metabolismo , Nematodos/genética , Familia de Multigenes , Simbiosis , Péptidos/genética
16.
Carbohydr Polym ; 295: 119825, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988993

RESUMEN

Low-molecular-weight heparin (LMWH) is prepared from the controlled chemical or enzymatic depolymerization of animal sourced heparins. It has been widely used as an anticoagulant. Concerns about the shortcomings of animal-derived heparin and the contamination of supply chain demand biochemical approaches for synthesizing LMWH. In the present study, two LMWHs were enzymatically synthesized from low molecular weight N-sulfated heparosan (LMW-NSH) cleaved by recombinant hydrolase, endo-ß-glucuronidase, (HepBp) or heparin lyase III (HepIII), followed by subsequent sulfotransferase modifications. Structural characterization shows that LMWH chains prepared using HepBp had a saturated uronic acid residue at their reducing ends, while chains of LMWH prepared using HepIII had an unsaturated uronic acid residue at their non-reducing end. Both LMWHs had anti-factor Xa and anti-factor IIa activities comparable to enoxaparin. This approach demonstrates that the hydrolase, HepBp, can be used to prepare a new type of LMWH that has no unsaturated uronic acid at its non-reducing end.


Asunto(s)
Glucuronidasa , Heparina de Bajo-Peso-Molecular , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Disacáridos , Heparina/química , Liasa de Heparina , Heparina de Bajo-Peso-Molecular/química , Peso Molecular , Ácidos Urónicos
17.
Molecules ; 27(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744795

RESUMEN

Irinotecan and Topotecan are two Camptothecin derivatives (CPTs) whose resistance is associated with the high expression of breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp). To reverse this resistance, two novel CPTs, FL77-28 (7-(3-Fluoro-4-methylphenyl)-10,11-methylenedioxy-20(S)-CPT) and FL77-29 (7-(4-Fluoro-3-methylphenyl)-10,11-methylenedioxy-20(S)-CPT), were synthesized by our group. In this study, the anti-tumor activities of FL77-28, FL77-29, and their parent, FL118 (10,11-methylenedioxy-20(S)-CPT), were evaluated and the results showed that FL77-28 and FL77-29 had stronger anti-tumor activities than FL118. The transport and uptake of FL118, FL77-28, and FL77-29 were investigated in Caco-2 cells for the preliminary prediction of intestinal absorption. The apparent permeability coefficient from apical to basolateral (Papp AP-BL) values of FL77-28 and FL77-29 were (2.32 ± 0.04) × 10-6 cm/s and (2.48 ± 0.18) × 10-6 cm/s, respectively, suggesting that the compounds had moderate absorption. Since the transport property of FL77-28 was passive diffusion and the efflux ratio (ER) was less than 2, two chemical inhibitors were added to further confirm the involvement of efflux proteins. The results showed that FL77-28 was not a substrate of P-gp or BCRP, but FL77-29 was mediated by P-gp. In conclusion, FL77-28 might be a promising candidate to overcome drug resistance induced by multiple efflux proteins.


Asunto(s)
Camptotecina , Proteínas de Neoplasias , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transporte Biológico , Células CACO-2 , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo
18.
Carbohydr Polym ; 290: 119411, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550744

RESUMEN

Low molecular weight seaweed polysaccharides exhibit promising potential as novel therapeutics for the prevention of obesity and gut microbiota dysbiosis. The interplay between polysaccharides and gut microbiota may play crucial roles in their anti-obesity effects, but is largely unknown, including the impact of polysaccharides on the composition of the gut microbiota with polysaccharide-degrading capacity. The primary structure of a 5.1 kDa fucan (J2H) from Saccharina japonica was characterized and oral administration of J2H effectively suppressed high-fat diet-induced obesity, blood glucose metabolic dysfunction, dyslipidemia, and gut microbiota dysbiosis. Furthermore, the Jensen-Shannon divergence analysis demonstrated that J2H enriched at least four gut bacterial species with fucoidan-degrading potential, including Bacteroides sartorii and Bacteroides acidifaciens. Our findings suggest that the low molecular weight S. japonica fucan, J2H, is a promising potential agent for obesity prevention and its enrichment of gut bacteria with fucoidan-degrading potential may play a vital role in the anti-obesity effects.


Asunto(s)
Dieta Alta en Grasa , Laminaria , Animales , Bacterias , Dieta Alta en Grasa/efectos adversos , Disbiosis , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Polisacáridos/química
19.
PLoS Genet ; 18(2): e1009994, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143487

RESUMEN

Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aß). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aß, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aß42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aß and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Ritmo Circadiano/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Fagocitosis/fisiología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Relojes Circadianos , Modelos Animales de Enfermedad , Proteoglicanos de Heparán Sulfato/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Agregación Patológica de Proteínas/metabolismo
20.
ACS Chem Biol ; 17(3): 637-646, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35201757

RESUMEN

Heparin products are widely used clinical anticoagulants essential in the practice of modern medicine. Low-molecular-weight heparins (LMWHs) are currently prepared by the controlled chemical or enzymatic depolymerization of unfractionated heparins (UFHs) that are extracted from animal tissues. In many clinical applications, LMWHs have displaced UFHs and currently comprise over 60% of the heparin market. In the past, our laboratory has made extensive efforts to prepare bioengineered UFHs relying on a chemoenzymatic process to address concerns about animal-sourced UFHs. The current study describes the use of a novel chemoenzymatic process to prepare a chemobiosynthetic LMWH from a low-molecular-weight heparosan. The resulting chemobiocatalytic LMWH matches most of the United States pharmacopeial specifications for enoxaparin, a LMWH prepared through the base-catalyzed depolymerization of animal-derived UFH.


Asunto(s)
Enoxaparina , Heparina de Bajo-Peso-Molecular , Animales , Anticoagulantes , Heparina , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA