Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Am Soc Mass Spectrom ; 35(6): 1138-1155, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38740383

RESUMEN

Having fast, accurate, and broad spectrum methods for the identification of microorganisms is of paramount importance to public health, research, and safety. Bottom-up mass spectrometer-based proteomics has emerged as an effective tool for the accurate identification of microorganisms from microbial isolates. However, one major hurdle that limits the deployment of this tool for routine clinical diagnosis, and other areas of research such as culturomics, is the instrument time required for the mass spectrometer to analyze a single sample, which can take ∼1 h per sample, when using mass spectrometers that are presently used in most institutes. To address this issue, in this study, we employed, for the first time, tandem mass tags (TMTs) in multiplex identifications of microorganisms from multiple TMT-labeled samples in one MS/MS experiment. A difficulty encountered when using TMT labeling is the presence of interference in the measured intensities of TMT reporter ions. To correct for interference, we employed in the proposed method a modified version of the expectation maximization (EM) algorithm that redistributes the signal from ion interference back to the correct TMT-labeled samples. We have evaluated the sensitivity and specificity of the proposed method using 94 MS/MS experiments (covering a broad range of protein concentration ratios across TMT-labeled channels and experimental parameters), containing a total of 1931 true positive TMT-labeled channels and 317 true negative TMT-labeled channels. The results of the evaluation show that the proposed method has an identification sensitivity of 93-97% and a specificity of 100% at the species level. Furthermore, as a proof of concept, using an in-house-generated data set composed of some of the most common urinary tract pathogens, we demonstrated that by using the proposed method the mass spectrometer time required per sample, using a 1 h LC-MS/MS run, can be reduced to 10 and 6 min when samples are labeled with TMT-6 and TMT-10, respectively. The proposed method can also be used along with Orbitrap mass spectrometers that have faster MS/MS acquisition rates, like the recently released Orbitrap Astral mass spectrometer, to further reduce the mass spectrometer time required per sample.


Asunto(s)
Algoritmos , Proteómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Humanos , Bacterias/aislamiento & purificación , Bacterias/química , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación
2.
J Proteome Res ; 23(6): 1983-1999, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728051

RESUMEN

In recent years, several deep learning-based methods have been proposed for predicting peptide fragment intensities. This study aims to provide a comprehensive assessment of six such methods, namely Prosit, DeepMass:Prism, pDeep3, AlphaPeptDeep, Prosit Transformer, and the method proposed by Guan et al. To this end, we evaluated the accuracy of the predicted intensity profiles for close to 1.7 million precursors (including both tryptic and HLA peptides) corresponding to more than 18 million experimental spectra procured from 40 independent submissions to the PRIDE repository that were acquired for different species using a variety of instruments and different dissociation types/energies. Specifically, for each method, distributions of similarity (measured by Pearson's correlation and normalized angle) between the predicted and the corresponding experimental b and y fragment intensities were generated. These distributions were used to ascertain the prediction accuracy and rank the prediction methods for particular types of experimental conditions. The effect of variables like precursor charge, length, and collision energy on the prediction accuracy was also investigated. In addition to prediction accuracy, the methods were evaluated in terms of prediction speed. The systematic assessment of these six methods may help in choosing the right method for MS/MS spectra prediction for particular needs.


Asunto(s)
Aprendizaje Profundo , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/estadística & datos numéricos , Proteómica/métodos , Proteómica/estadística & datos numéricos
3.
J Comput Biol ; 31(2): 175-178, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301204

RESUMEN

Although many user-friendly workflows exist for identifications of peptides and proteins in mass-spectrometry-based proteomics, there is a need of easy to use, fast, and accurate workflows for identifications of microorganisms, antimicrobial resistant proteins, and biomass estimation. Identification of microorganisms is a computationally demanding task that requires querying thousands of MS/MS spectra in a database containing thousands to tens of thousands of microorganisms. Existing software can't handle such a task in a time efficient manner, taking hours to process a single MS/MS experiment. Another paramount factor to consider is the necessity of accurate statistical significance to properly control the proportion of false discoveries among the identified microorganisms, and antimicrobial-resistant proteins, and to provide robust biomass estimation. Recently, we have developed Microorganism Classification and Identification (MiCId) workflow that assigns accurate statistical significance to identified microorganisms, antimicrobial-resistant proteins, and biomass estimation. MiCId's workflow is also computationally efficient, taking about 6-17 minutes to process a tandem mass-spectrometry (MS/MS) experiment using computer resources that are available in most laptop and desktop computers, making it a portable workflow. To make data analysis accessible to a broader range of users, beyond users familiar with the Linux environment, we have developed a graphical user interface (GUI) for MiCId's workflow. The GUI brings to users all the functionality of MiCId's workflow in a friendly interface along with tools for data analysis, visualization, and to export results.


Asunto(s)
Antiinfecciosos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Programas Informáticos , Proteínas
4.
Cancer Inform ; 22: 11769351231159893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008073

RESUMEN

Motivation: The PAM50 signature/method is widely used for intrinsic subtyping of breast cancer samples. However, depending on the number and composition of the samples included in a cohort, the method may assign different subtypes to the same sample. This lack of robustness is mainly due to the fact that PAM50 subtracts a reference profile, which is computed using all samples in the cohort, from each sample before classification. In this paper we propose modifications to PAM50 to develop a simple and robust single-sample classifier, called MPAM50, for intrinsic subtyping of breast cancer. Like PAM50, the modified method uses a nearest centroid approach for classification, but the centroids are computed differently, and the distances to the centroids are determined using an alternative method. Additionally, MPAM50 uses unnormalized expression values for classification and does not subtract a reference profile from the samples. In other words, MPAM50 classifies each sample independently, and so avoids the previously mentioned robustness issue. Results: A training set was employed to find the new MPAM50 centroids. MPAM50 was then tested on 19 independent datasets (obtained using various expression profiling technologies) containing 9637 samples. Overall good agreement was observed between the PAM50- and MPAM50-assigned subtypes with a median accuracy of 0.792, which (we show) is comparable with the median concordance between various implementations of PAM50. Additionally, MPAM50- and PAM50-assigned intrinsic subtypes were found to agree comparably with the reported clinical subtypes. Also, survival analyses indicated that MPAM50 preserves the prognostic value of the intrinsic subtypes. These observations demonstrate that MPAM50 can replace PAM50 without loss of performance. On the other hand, MPAM50 was compared with 2 previously published single-sample classifiers, and with 3 alternative modified PAM50 approaches. The results indicated a superior performance by MPAM50. Conclusions: MPAM50 is a robust, simple, and accurate single-sample classifier of intrinsic subtypes of breast cancer.

5.
Cancer Inform ; 21: 11769351221100718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722224

RESUMEN

Motivation: The precise diagnosis of the major subtypes, lung adenocarcinoma and lung squamous cell carcinoma, of non-small-cell lung cancer is of practical importance as some treatments are subtype-specific. However, in some cases diagnosis via the commonly-used method, that is staining the specimen using immunohistochemical markers, may be challenging. Hence, having a computational method that complements the diagnosis is desirable. In this paper, we propose a gene signature for this purpose. Results: We developed an expression-based method that systematically suggests a huge set of candidate gene signatures and finds the best candidate. By applying this method to a training set, the optimal gene signature was found by considering close to 765 billion candidate signatures. The 8-gene signature found for classifying the 2 aforementioned subtypes comprises TP63, CALML3, KRT5, PKP1, TESC, SPINK1, C9orf152, and KRT7. The signature achieved a high overall prediction accuracy of 0.936 when tested using 34 independent gene expression datasets obtained using different technologies and comprising 2556 adenocarcinoma and 1630 squamous cell carcinoma samples. Additionally, the signature performed well in clinically challenging cases, that is poorly differentiated tumors and specimens obtained from biopsies. In comparison with 2 previously reported signatures, our signature performed better in terms of overall accuracy and especially accuracy of classifying lung squamous cell carcinoma. Conclusions: Our signature is easy to use and accurate regardless of the technology used to obtain the gene expression profiles. It performs well even in clinically challenging cases and thus can assist pathologists in diagnosis of the ambiguous cases.

6.
J Am Soc Mass Spectrom ; 33(6): 917-931, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500907

RESUMEN

Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Bacterias/química , Farmacorresistencia Bacteriana , Farmacorresistencia Microbiana , Escherichia coli , Humanos , Proteómica/métodos , Pseudomonas aeruginosa , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo
7.
Eur Phys J E Soft Matter ; 44(10): 129, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34661792

RESUMEN

Electrostatic interactions among colloidal particles are often described using the venerable (two-particle) Derjaguin-Landau-Verwey-Overbeek (DLVO) approximation and its various modifications. However, until the recent development of a many-body theory exact at the Debye-Hückel level (Yu in Phys Rev E 102:052404, 2020), it was difficult to assess the errors of such approximations and impossible to assess the role of many-body effects. By applying the exact Debye-Hückel level theory, we quantify the errors inherent to DLVO and the additional errors associated with replacing many-particle interactions by the sum of pairwise interactions (even when the latter are calculated exactly). In particular, we show that: (1) the DLVO approximation does not provide sufficient accuracy at shorter distances, especially when there is an asymmetry in charges and/or sizes of interacting dielectric spheres; (2) the pairwise approximation leads to significant errors at shorter distances and at large and moderate Debye lengths and also gets worse with increasing asymmetry in the size of the spheres or magnitude or placement of the charges. We also demonstrate that asymmetric dielectric screening, i.e., the enhanced repulsion between charged dielectric bodies immersed in media with high dielectric constant, is preserved in the presence of free ions in the medium.


Asunto(s)
Modelos Químicos , Iones , Electricidad Estática
8.
Front Cell Infect Microbiol ; 11: 634215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381737

RESUMEN

Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Bacteriemia/diagnóstico , Candida albicans , Escherichia coli , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus
9.
J Proteome Res ; 20(3): 1476-1487, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33573382

RESUMEN

Simple light isotope metabolic labeling (SLIM labeling) is an innovative method to quantify variations in the proteome based on an original in vivo labeling strategy. Heterotrophic cells grown in U-[12C] as the sole source of carbon synthesize U-[12C]-amino acids, which are incorporated into proteins, giving rise to U-[12C]-proteins. This results in a large increase in the intensity of the monoisotope ion of peptides and proteins, thus allowing higher identification scores and protein sequence coverage in mass spectrometry experiments. This method, initially developed for signal processing and quantification of the incorporation rate of 12C into peptides, was based on a multistep process that was difficult to implement for many laboratories. To overcome these limitations, we developed a new theoretical background to analyze bottom-up proteomics data using SLIM-labeling (bSLIM) and established simple procedures based on open-source software, using dedicated OpenMS modules, and embedded R scripts to process the bSLIM experimental data. These new tools allow computation of both the 12C abundance in peptides to follow the kinetics of protein labeling and the molar fraction of unlabeled and 12C-labeled peptides in multiplexing experiments to determine the relative abundance of proteins extracted under different biological conditions. They also make it possible to consider incomplete 12C labeling, such as that observed in cells with nutritional requirements for nonlabeled amino acids. These tools were validated on an experimental dataset produced using various yeast strains of Saccharomyces cerevisiae and growth conditions. The workflows are built on the implementation of appropriate calculation modules in a KNIME working environment. These new integrated tools provide a convenient framework for the wider use of the SLIM-labeling strategy.


Asunto(s)
Proteoma , Proteómica , Secuencia de Aminoácidos , Marcaje Isotópico , Espectrometría de Masas
10.
Phys Rev E ; 102(5-1): 052404, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327080

RESUMEN

The unequivocal role of electrostatic forces in biological (and colloidal) systems underscores the importance of attaining accurate and rapid calculations of electrostatic forces if one wishes to faithfully simulate the electrostatic aspect of a biological system. This paper makes significant progress toward this aspect as it rigorously incorporates ionic screening at the Debye-Hückel level for an electrolyte system containing dielectric spheres of finite radii. We investigated earlier this system without mobile ions via a surface charge method. However, the need for computing a large number of Wigner rotation matrix elements per configuration can significantly slow down the numerical calculations. This difficulty was recently overcome by our Wigner-matrix-free formalism. Unfortunately, in that method ions can only be included individually, making it impractical to investigate, for example, ionic screening in a system modeled by charged dielectric spheres immersed in a solution of mobile ions. Here, we overcome this difficulty by extending the surface charge method to treat ions implicitly. Previous treatments of charged dielectric spheres in a solution of mobile ions did not emphasize the energy reciprocity of electrostatics and are largely limited to a few spheres and/or special symmetries. Our new formalism respects reciprocity and accommodates arbitrarily many dielectric spheres of different dielectric constants and sizes while being rigorous at the Debye-Hückel level. The differences, and the relationship, between our new implicit ion treatment and our previous ion-free (or explicit ion) approach are described. A closed form for the electrostatic energy with implicit ions is also provided. This new formalism speeds up the computation of the electrostatic energy in the presence of ions, and accommodates permanent and induced multipoles that are very important when the polarization effect needs to be correctly included. We also mention how the proposed method can be transformed to a numerical method for use with arbitrary nonspherical surfaces.

11.
J Am Soc Mass Spectrom ; 31(1): 85-102, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-32881514

RESUMEN

Rapid and accurate identification of microorganisms and estimation of their biomasses are of extreme importance to public health. Mass spectrometry has become an important technique for these purposes. Previously we published a workflow named Microorganism Classification and Identification (MiCId v.12.26.2017) that was shown to perform no worse than other workflows. This manuscript presents MiCId v.12.13.2018 that, in comparison with the earlier version v.12.26.2017, allows for biomass estimates, provides more accurate microorganism identifications (better controls the number of false positives), and is robust against database size increase. This significant advance is made possible by several new ingredients introduced: first, we apply a modified expectation-maximization method to compute for each taxon considered a prior probability, which can be used for biomass estimate; second, we introduce a new concept called ownership, through which the participation ratio is computed and use it as the number of taxa to be kept within a cluster of closely related taxa; third, based on confidently identified peptides, we calculate for each taxon its degree of independence from the rest of taxa considered to determine whether or not to split this taxon off the cluster. Using 270 data files, each containing a large number of MS/MS spectra, we show that, in comparison with v.12.26.2017, version v.12.13.2018 yields superior retrieval results. We also show that MiCId v.12.13.2018 can estimate species biomass reasonably well. The new MiCId v.12.13.2018, designed to run in Linux environment, is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.


Asunto(s)
Técnicas Microbiológicas/métodos , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Bacterias/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biomasa , Biología Computacional/métodos , Bases de Datos Factuales , Bases de Datos de Proteínas , Péptidos/química , Flujo de Trabajo
12.
Phys Rev E ; 100(1-1): 012401, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499794

RESUMEN

Given the crucial role of electrostatic forces in biological systems, accurate and rapid calculations of electrostatic forces are imperative in faithfully simulating biological systems. More than a decade ago, we proposed a surface charge method, applied it to a system of an arbitrary number of charged dielectric spheres, and obtained an exact solution for arbitrary configuration of the spheres. The precision depends only on the number of terms kept in a series expansion, and can therefore be controlled at will. However, the numerical implementation can be significantly slowed down by the need to compute a large number of Wigner rotation matrix elements each time the electrostatic energy is calculated. In this paper, we provide the proof of a formula introduced in 1992 and apply it to arrive at a useful closed form for the electrostatic interaction energy without computing any Wigner rotation matrix elements, hence significantly improving the efficiency for numeric implementation of the rigorous surface charge method. This new Wigner-matrix-free formalism may also be used to speed up the computation of the electrostatic energy in the presence of permanent and induced multipoles, which can be very important for atomic modeling with polarization effect included.


Asunto(s)
Rotación , Electricidad Estática , Impedancia Eléctrica , Propiedades de Superficie
13.
PLoS One ; 14(8): e0220742, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31374103

RESUMEN

Reprogramming of somatic cells to induced pluripotent stem cells, by overexpressing certain factors referred to as the reprogramming factors, can revolutionize regenerative medicine. To provide a coherent description of induced pluripotency from the gene regulation perspective, we use 35 microarray datasets to construct a reprogramming gene regulatory network. Comprising 276 nodes and 4471 links, the resulting network is, to the best of our knowledge, the largest gene regulatory network constructed for human fibroblast reprogramming and it is the only one built using a large number of experimental datasets. To build the network, a model that relates the expression profiles of the initial (fibroblast) and final (induced pluripotent stem cell) states is proposed and the model parameters (link strengths) are fitted using the experimental data. Twenty nine additional experimental datasets are collectively used to test the model/network, and good agreement between experimental and predicted gene expression profiles is found. We show that the model in conjunction with the constructed network can make useful predictions. For example, we demonstrate that our approach can incorporate the effect of reprogramming factor stoichiometry and that its predictions are consistent with the experimentally observed trends in reprogramming efficiency when the stoichiometric ratios vary. Using our model/network, we also suggest new (not used in training of the model) candidate sets of reprogramming factors, many of which have already been experimentally verified. These results suggest our model/network can potentially be used in devising new recipes for induced pluripotency with higher efficiencies. Additionally, we classify the links of the network into three classes of different importance, prioritizing them for experimental verification. We show that many of the links in the top ranked class are experimentally known to be important in reprogramming. Finally, comparing with other methods, we show that using our model is advantageous.


Asunto(s)
Reprogramación Celular/fisiología , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Células Madre Pluripotentes Inducidas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos
14.
Cell Rep ; 26(10): 2580-2592.e7, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840883

RESUMEN

Efficiency of reprogramming of human cells into induced pluripotent stem cells (iPSCs) has remained low. We report that individual adult human CD49f+ long-term hematopoietic stem cells (LT-HSCs) can be reprogrammed into iPSCs at close to 50% efficiency using Sendai virus transduction. This exquisite sensitivity to reprogramming is specific to LT-HSCs, since it progressively decreases in committed progenitors. LT-HSC reprogramming can follow multiple paths and is most efficient when transduction is performed after the cells have exited G0. Sequencing of 75 paired skin fibroblasts/LT-HSC samples collected from nine individuals revealed that LT-HSCs contain a lower load of somatic single-nucleotide variants (SNVs) and indels than skin fibroblasts and accumulate about 12 SNVs/year. Mutation analysis revealed that LT-HSCs and fibroblasts have very different somatic mutation signatures and that somatic mutations in iPSCs generally exist prior to reprogramming. LT-HSCs may become the preferred cell source for the production of clinical-grade iPSCs.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Adolescente , Adulto , Reprogramación Celular , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Proteomics ; 19(14): e1800367, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30908818

RESUMEN

Mass spectrometry-based proteomics starts with identifications of peptides and proteins, which provide the bases for forming the next-level hypotheses whose "validations" are often employed for forming even higher level hypotheses and so forth. Scientifically meaningful conclusions are thus attainable only if the number of falsely identified peptides/proteins is accurately controlled. For this reason, RAId continued to be developed in the past decade. RAId employs rigorous statistics for peptides/proteins identification, hence assigning accurate P-values/E-values that can be used confidently to control the number of falsely identified peptides and proteins. The RAId web service is a versatile tool built to identify peptides and proteins from tandem mass spectrometry data. Not only recognizing various spectra file formats, the web service also allows four peptide scoring functions and choice of three statistical methods for assigning P-values/E-values to identified peptides. Users may upload their own protein database or use one of the available knowledge integrated organismal databases that contain annotated information such as single amino acid polymorphisms, post-translational modifications, and their disease associations. The web service also provides a friendly interface to display, sort using different criteria, and download the identified peptides and proteins. RAId web service is freely available at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid.


Asunto(s)
Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Proteómica/métodos , Biología Computacional
16.
Phys Rev Lett ; 121(18): 185505, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444387

RESUMEN

Thermal expansion of H_{2}O and D_{2}O ice Ih with relative resolution of 1 ppb is reported. A large transition in the thermal expansion coefficient at 101 K in H_{2}O moves to 125 K in D_{2}O, revealing one of the largest-known isotope effects. Rotational oscillatory modes that couple poorly to phonons, i.e., lattice solitons, may be responsible.

17.
J Phys Condens Matter ; 30(43): 435801, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30215385

RESUMEN

Quantum spin chains with composite spins have been used to approximate conventional chains with higher spins. For instance, a spin 1 (or [Formula: see text]) chain was sometimes approximated by a chain with two (or three) spin [Formula: see text]'s per site. However, little examination has been given as to whether this approximation, effectively assuming the first Hund rule per site, is valid and why. In this paper, the validity of this approximation is investigated numerically. We diagonalize the Hamiltonians of spin chains with a spin 1 and [Formula: see text] per site and with two and three spin [Formula: see text]'s per site. The low energy excitation spectrum for the spin chain with M spin [Formula: see text]'s per site is found to coincide with that of the corresponding conventional chain with one spin [Formula: see text] per site. In particular, we find that as the system size increases, an increasingly larger block of consecutive lowest energy states with maximal spin per site is observed, robustly supporting the first Hund rule even though the exclusion principle does not apply and the system does not possess Coulomb repulsion. As for why this approximation works, we show that this effective Hund rule emerges as a plausible consequence when applying to composite spin systems the Lieb-Mattis theorem, which is originally for the ground state of ferrimagnetic and antiferromagnetic spin systems.

18.
J Am Soc Mass Spectrom ; 29(8): 1721-1737, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29873019

RESUMEN

Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

19.
BMC Res Notes ; 11(1): 182, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544540

RESUMEN

OBJECTIVE: RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. RESULTS: We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .


Asunto(s)
Biología Computacional/métodos , Proteoma/análisis , Proteómica/métodos , Programas Informáticos , Interfaz Usuario-Computador , Bases de Datos de Proteínas , Humanos , Internet , Espectrometría de Masas en Tándem/métodos
20.
J Phys Condens Matter ; 30(10): 105003, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29376832

RESUMEN

Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.


Asunto(s)
Electricidad Estática , Electricidad , Modelos Teóricos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...