Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(9): 1124-1130, 2024 Sep 10.
Artículo en Chino | MEDLINE | ID: mdl-39217494

RESUMEN

OBJECTIVE: To assess the application value of CNVPLUS-array for the genetic analysis of Spinal muscular atrophy (SMA). METHODS: From June 2021 to December 2022, CNVPLUS-array technique was employed to test the SMN1 and SMN2 genes among peripheral blood samples from 17 suspected SMA patients, 18 core families with suspected SMA, and 25 healthy individuals. The results were compared with those of multiple ligation-dependent probe amplification (MLPA) assay. Samples with inconsistent results were subjected to nested PCR or comprehensive analysis of SMA. RESULTS: CNVPLUS-array has identified 35 SMA patients, 36 carriers, and 25 healthy individuals. In comparison, MLPA has identified 34 SMA patients, 36 carriers, and 26 healthy individuals. The two methods demonstrated a high consistency (Kappa = 0.968, P < 0.001). Additionally, CNVPLUS-array has identified one patient with compound heterozygous variants of SMN1 and one carrier with a [2+0] genotype. CONCLUSION: CNVPLUS-array not only can accurately determine the copy numbers of SMN1 and SMN2 genes, but also identify point mutations in SMN1 and [2+0] carriers, which has offered a new method for the genetic testing of SMA.


Asunto(s)
Variaciones en el Número de Copia de ADN , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Femenino , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pruebas Genéticas/métodos , Niño , Genotipo , Preescolar
2.
Genome Med ; 16(1): 113, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300495

RESUMEN

BACKGROUND: Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). METHODS: This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. RESULTS: OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases-two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5'UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5' and 3' non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. CONCLUSIONS: SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.


Asunto(s)
Mapeo Cromosómico , Trastornos del Neurodesarrollo , RNA-Seq , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Masculino , Femenino , Niño , Secuenciación del Exoma , Variación Estructural del Genoma , Preescolar
3.
J Mol Biol ; 436(20): 168733, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128787

RESUMEN

Detecting chromosome structural abnormalities in medical genetics is essential for diagnosing genetic disorders and understanding their implications for an individual's health. However, existing computational methods are formulated as a binary-class classification problem trained only on representations of positive/negative chromosome pairs. This paper introduces an innovative framework for detecting chromosome abnormalities with banding resolution, capable of precisely identifying and masking the specific abnormal regions. We highlight a pixel-level abnormal mapping strategy guided by banding features. This approach integrates data from both the original image and banding characteristics, enhancing the interpretability of prediction results for cytogeneticists. Furthermore, we have implemented an ensemble approach that pairs a discriminator with a conditional random field heatmap generator. This combination significantly reduces the false positive rate in abnormality screening. We benchmarked our proposed framework with state-of-the-art (SOTA) methods in abnormal screening and structural abnormal region segmentation. Our results show cutting-edge effectiveness and greatly reduce the high false positive rate. It also shows superior performance in sensitivity and segmentation accuracy. Being able to identify abnormal regions consistently shows that our model has demonstrated significant clinical utility with high model interpretability. BRChromNet is open-sourced and available at https://github.com/frankchen121212/BR-ChromNet.


Asunto(s)
Bandeo Cromosómico , Humanos , Aberraciones Cromosómicas , Algoritmos , Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Genet Genomics ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151821

RESUMEN

Netrin-G2 is a membrane-anchored protein known to play critical roles in neuronal circuit development and synaptic organization. In this study, we identify compound heterozygous mutations of c.547delC, p.(Arg183Alafs∗186) and c.605G > A, p.(Trp202X) in NTNG2 causing a syndrome exhibiting developmental delay, intellectual disability, hypotonia, and facial dysmorphism. To elucidate the underlying cellular and molecular mechanisms, CRISPR-Cas9 technology is employed to generate a knock-in mouse model expressing the R183Afs and W202X mutations. We report that the Ntng2R183Afs/W202X mice exhibit hypotonia and impaired learning and memory. We find that the levels of CaMKII and p-GluA1Ser831 are decreased, and excitatory postsynaptic transmission and long-term potentiation are impaired. To increase the activity of CaMKII, the mutant mice receive intraperitoneal injections of DCP-LA, a CaMKII agonist, and show improved cognitive function. Together, our findings reveal molecular mechanisms of how NTNG2 deficiency leads to impairments of cognitive ability and synaptic plasticity.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39049755

RESUMEN

CONTEXT: Genetic testing for 21-hydroxylase deficiency (21-OHD) is always challenging. Current approaches, short-read sequencing and multiplex ligation-dependent probe amplification (MLPA), are insufficient for the detection of chimeric genes or complicated variants from multiple copies. Recently developed long-read sequencing (LRS) can solve this problem. OBJECTIVE: To investigate the clinical utility of LRS in precision diagnosis of 21-hydroxylase deficiency. METHODS: In the cohort of 832 patients with 21-OHD, the current approaches provided the precise molecular diagnosis for 81.7% (680/832) of cases. LRS was performed to solve the remaining 144 cases with complex chimeric variants and eight cases with variants from multiple copies. Clinical manifestations in patients with continuous deletions of CYP21A2 extending to TNXB (namely CAH-X) were further evaluated. RESULTS: Using LRS in combination with previous genetic test results, a total of 16.9% (281/1664) CYP21A1P/CYP21A2 or TNXA/TNXB chimeric alleles were identified in 832 patients, with CYP21A1P/CYP21A2 accounting for 10.4% and TNXA/TNXB for 6.5%. The top three common chimeras were CYP21 CH-1, TNX CH-1 and TNX CH-2, accounting for 77.2% (217/281) of all chimeric alleles. The eight patients with variants on multiple copies of CYP21A2 were accurately identified with LRS. The prevalence of CAH-X in our cohort was 12.1%, and a high frequency of connective tissue-related symptoms was observed in CAH-X patients. CONCLUSION: LRS can detect all types of CYP21A2 variants, including complex chimeras and pathogenic variants on multiple copies in patients with 21-OHD, which could be utilized as a first-tier routine test for the precision diagnosis and categorization of congenital adrenal hyperplasia.

6.
BMC Pediatr ; 24(1): 468, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039462

RESUMEN

BACKGROUND: Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown. METHODS: We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individuals. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shotgun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome and metabolites. RESULTS: We detected marked differences in the composition of fecal metabolites in the ISS group, particularly a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when compared to those of controls. We further identified specific groups of bacterial strains to be associated with the different metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS children from the controls (AUC = 0.933 [95%CI, 79.9-100%]) by receiver operating characteristic (ROC) analysis. CONCLUSION: Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in children's growth. These findings provide a new research direction for better understanding the mechanism(s) underlying ISS.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Niño , Masculino , Femenino , Heces/microbiología , Estudios de Casos y Controles , Adolescente , Estatura , Trastornos del Crecimiento/microbiología , Trastornos del Crecimiento/metabolismo , Metabolómica/métodos , Metaboloma
7.
Clin Chem Lab Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39022805

RESUMEN

OBJECTIVES: Regions of homozygosity (ROH) could implicate uniparental disomy (UPD) on specific chromosomes associated with imprinting disorders. Though the algorithms for ROH detection in exome sequencing (ES) have been developed, optimal reporting thresholds and when to pursue confirmatory UPD testing for imprinting disorders remain in ambiguity. This study used a data-driven approach to assess optimal reporting thresholds of ROH in clinical practice. METHODS: ROH analysis was performed using Automap in a retrospective cohort of 8,219 patients and a prospective cohort of 1,964 patients with ES data. Cases with ROH on imprinting-disorders related chromosomes were selected for additional methylation-specific confirmatory testing. The diagnostic yield, the ROH pattern of eventually diagnosed cases and optimal thresholds for confirmatory testing were analyzed. RESULTS: In the retrospective analysis, 15 true UPD cases of imprinting disorders were confirmed among 51 suspected cases by ROH detection. Pattern of ROH differed between confirmed UPD and non-UPD cases. Maximized yield and minimized false discovery rate of confirmatory UPD testing was achieved at the thresholds of >20 Mb or >25 % chromosomal coverage for interstitial ROH, and >5 Mb for terminal ROH. Current recommendation by ACMG was nearly optimal, though refined thresholds as proposed in this study could reduce the workload by 31 % without losing any true UPD diagnosis. Our refined thresholds remained optimal after independent evaluation in a prospective cohort. CONCLUSIONS: ROH identified in ES could implicate the presence of clinically relevant UPD. This study recommended size and coverage thresholds for confirmatory UPD testing after ROH detection in ES, contributing to the development of evidence-based reporting guidelines.

8.
Comput Biol Med ; 177: 108601, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776728

RESUMEN

Automated karyotyping is of great importance for cytogenetic research, as it speeds up the process for cytogeneticists through incorporating AI-driven automated segmentation and classification techniques. Existing frameworks confront two primary issues: Firstly the necessity for instance-level data annotation with either detection bounding boxes or semantic masks for training, and secondly, its poor robustness particularly when confronted with domain shifts. In this work, we first propose an accurate segmentation framework, namely KaryoXpert. This framework leverages the strengths of both morphology algorithms and deep learning models, allowing for efficient training that breaks the limit for the acquirement of manually labeled ground-truth mask annotations. Additionally, we present an accurate classification model based on metric learning, designed to overcome the challenges posed by inter-class similarity and batch effects. Our framework exhibits state-of-the-art performance with exceptional robustness in both chromosome segmentation and classification. The proposed KaryoXpert framework showcases its capacity for instance-level chromosome segmentation even in the absence of annotated data, offering novel insights into the research for automated chromosome segmentation. The proposed method has been successfully deployed to support clinical karyotype diagnosis.


Asunto(s)
Cariotipificación , Humanos , Cariotipificación/métodos , Metafase , Algoritmos , Cromosomas Humanos/genética , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo
9.
J Hum Genet ; 69(8): 381-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38730005

RESUMEN

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.


Asunto(s)
ADN Mitocondrial , Discapacidades del Desarrollo , Enfermedades Mitocondriales , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación , Mitocondrias/genética , Mitocondrias/metabolismo , Masculino , Femenino , Potencial de la Membrana Mitocondrial/genética , Fosforilación Oxidativa , Preescolar , Especies Reactivas de Oxígeno/metabolismo
10.
Genet Med ; 26(8): 101167, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38770750

RESUMEN

PURPOSE: Rare genetic variants in the PURA gene cause the PURA-related neurodevelopmental disorder (PURA-NDD), characterized by neonatal abnormalities and developmental delay. Using genome-wide DNA methylation analysis on patients with PURA variants, we aim to establish a PURA-NDD-specific methylation profile and provide further insights on the molecular basis of the PURA-NDD. METHODS: Twenty three individuals (including 12 unpublished) carrying PURA variants were enrolled. We conducted the Illumina Infinium EPIC microarray analysis in 17 PURA-NDD individuals. In vitro experiments were performed to examine how PURA variants affect Pur-a expression. RESULTS: Additional phenotypes in 12 newly identified patients were described in this study. Genome-wide DNA methylation analysis unveiled distinctive methylation profiles to PURA-NDD, and the established classifier can reclassify PURA variants of uncertain significance. Patients bearing PURA hapoloinsufficient and missense variants have comparable DNA methylation profiles, and cells expressing these PURA variants showed consistent Pur-a downregulation, suggesting a haploinsufficiency mechanism. CONCLUSION: Patients with PURA-NDD exhibit a specific episignature, which has potential to aid identification and diagnosis of PURA-NDD patients and offer implications for further functional investigations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Metilación de ADN/genética , Femenino , Epigénesis Genética/genética , Masculino , Niño , Preescolar , Estudio de Asociación del Genoma Completo , Fenotipo , Haploinsuficiencia/genética , Lactante
11.
J Med Genet ; 61(1): 27-35, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586839

RESUMEN

BACKGROUND: Primary adrenal insufficiency (PAI) is a rare but life-threatening condition. Differential diagnosis of numerous causes of PAI requires a thorough understanding of the condition. METHODS: To describe the genetic composition and presentations of PAI. The following data were collected retrospectively from 111 patients with non-21OHD with defined genetic diagnoses: demographic information, onset age, clinical manifestations, laboratory findings and genetic results. Patients were divided into four groups based on the underlying pathogenesis: (1) impaired steroidogenesis, (2) adrenal hypoplasia, (3) resistance to adrenocorticotropic hormone (ACTH) and (4) adrenal destruction. The age of onset was compared within the groups. RESULTS: Mutations in the following genes were identified: NR0B1 (n=39), STAR (n=33), CYP11B1 (n=12), ABCD1 (n=8), CYP17A1 (n=5), HSD3B2 (n=4), POR (n=4), MRAP (n=2), MC2R (n=1), CYP11A1 (n=1), LIPA (n=1) and SAMD9 (n=1). Frequent clinical manifestations included hyperpigmentation (73.0%), dehydration (49.5%), vomiting (37.8%) and abnormal external genitalia (23.4%). Patients with adrenal hypoplasia typically presented manifestations earlier than those with adrenal destruction but later than those with impaired steroidogenesis (both p<0.01). The elevated ACTH (92.6%) and decreased cortisol (73.5%) were the most common laboratory findings. We generated a differential diagnosis flowchart for PAI using the following clinical features: 17-hydroxyprogesterone, very-long-chain fatty acid, external genitalia, hypertension and skeletal malformation. This flowchart identified 84.8% of patients with PAI before next-generation DNA sequencing. CONCLUSIONS: STAR and NR0B1 were the most frequently mutated genes in patients with non-21OHD PAI. Age of onset and clinical characteristics were dependent on aetiology. Combining clinical features and molecular tests facilitates accurate diagnosis.


Asunto(s)
Enfermedad de Addison , Insuficiencia Suprarrenal , Humanos , Enfermedad de Addison/genética , Estudios Retrospectivos , Hormona Adrenocorticotrópica , China , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , Péptidos y Proteínas de Señalización Intracelular
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 909-914, 2023 Aug 10.
Artículo en Chino | MEDLINE | ID: mdl-37532487

RESUMEN

Dystrophinopathies, including Duchenne muscular dystrophy, Becker muscular dystrophy and dilated cardiomyopathy, are X-linked recessive genetic disorders due to variants of the dystrophin gene, which can seriously affect quality of life and health. Genetic diagnosis plays a crucial role in their diagnosis, treatment, and prevention. How to rationally select and standardize the use of various genetic techniques is a skill that clinicians must acquire. By compiling expertise of experts from the relevant areas and guidelines published home and abroad, this consensus has provided a guidance from the perspective of genetic diagnosis for the selection of genetic techniques, testing strategies, and detection process for dystrophinopathies.


Asunto(s)
Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Humanos , Calidad de Vida , Consenso , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Cardiomiopatía Dilatada/genética , Electrocardiografía
13.
Ann Neurol ; 94(6): 1136-1154, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37597256

RESUMEN

OBJECTIVE: Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS: We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS: We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION: We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.


Asunto(s)
Discapacidad Intelectual , Células-Madre Neurales , Ratones , Animales , Humanos , Células-Madre Neurales/metabolismo , Transducción de Señal/genética , Ciclinas/metabolismo , Apoptosis
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 769-780, 2023 Jul 10.
Artículo en Chino | MEDLINE | ID: mdl-37368376

RESUMEN

21 hydroxylase deficiency (21-OHD), the most common form of congenital adrenal hyperplasia, is caused by defects in CYP21A2 gene, which encodes the cytochrome P450 oxidase (P450C21) involved in glucocorticoid and mineralocorticoid synthesis. The diagnosis of 21-OHD is based on the comprehensive evaluation of clinical manifestation, biochemical alteration and molecular genetics results. Due to the complex structure of CYP21A2, special techniques are required to perform delicate analysis to avoid the interference of its pseudogene. Recently, the state-of-the-art diagnostic methods were applied to the clinic gradually, including the steroid hormone profiling and third generation sequencing. To standardize the laboratory diagnosis of 21-OHD, this consensus was drafted on the basis of the extensive knowledge, the updated progress and the published consensuses and guidelines worldwide by expert discussion organized by Rare Diseases Group of Pediatric Branch of Chinese Medical Association, Medical Genetics Branch of Chinese Medical Doctor Association, Birth Defect Prevention and Molecular Genetics Branch of China Maternal and Child Health Association. and Molecular Diagnosis Branch of Shanghai Medical Association.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Niño , Humanos , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Esteroide 21-Hidroxilasa/genética , Consenso , China , Técnicas de Laboratorio Clínico , Mutación
15.
J Mol Diagn ; 25(5): 284-294, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36849017

RESUMEN

Phenylalanine hydroxylase (PAH) deficiency or phenylketonuria (PKU) is the most common cause of hyperphenylalaninemia (HPA), and approximately 5% of patients remain genetically unsolved. Identifying deep intronic PAH variants may help improve their molecular diagnostic rate. Next-generation sequencing was utilized to detect the whole PAH gene in 96 patients with genetically unsolved HPA from 2013 to 2022. The effects of deep intronic variants on pre-mRNA splicing were investigated by minigene-based assay. The allelic phenotype values of recurrent deep intronic variants were calculated. Twelve deep intronic PAH variants, located in intron 5 (c.509+434C>T), intron 6 (c.706+288T>G, c.706+519T>C, c.706+531T>C, c.706+535G>T, c.706+600A>C, c.706+603T>G, and c.706+608A>C), intron 10 (c.1065+241C>A and c.1065+258C>A), and intron 11 (c.1199+502A>T and c.1199+745T>A) were identified in 80.2% (77/96) patients. Ten of the 12 variants were novel, and they all generated pseudoexons in mRNA, leading to frameshift or lengthened proteins. The most prevalent deep intronic variant was c.1199+502A>T, followed by c.1065+241C>A, c.1065+258C>A, and c.706+531T>C. The metabolic phenotypes of the four variants were assigned as classic PKU, mild HPA, mild HPA, and mild PKU, respectively. The results suggest that deep intronic PAH variants improved the diagnostic rate from 95.3% to 99.3% in the overall patients with HPA. Our data demonstrate the importance of assessing noncoding variants in genetic diseases. Pseudoexon inclusion caused by deep intronic variants may represent a recurrent mechanism.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Genotipo , Intrones/genética , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Mutación , Fenotipo
16.
Eur J Hum Genet ; 31(1): 112-121, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36376392

RESUMEN

PURA-related neurodevelopmental disorders (PURA-NDDs) include 5q31.3 microdeletion syndrome and PURA syndrome. PURA has been proposed as a candidate gene responsible for 5q31.3 microdeletion syndrome. Phenotype comparisons between patients with PURA mutations and 5q31.3 microdeletions encompassing more than PURA gene are lacking. A total of 25 previously undescribed Mainland China patients were evaluated. Clinical data were obtained from medical record review and standardized medical history questionnaire. Clinical profile and genetic spectrum of the patients with PURA syndrome and genotype-phenotype correlations between PURA mutations group and 5q31.3 microdeletions group were analyzed. Our identified seventeen de nove PURA variants were novel, and two recurrent frameshift variants, c.697_699del (p.F233del) and c.159dup (p.L54Afs*147) were detected in the four independent pedigrees. One patient with 5q31.3 microdeletion further supported the shortest overlapping region only contains PURA and IGIP gene. Developmental delay/intellectual disability, neonatal hypotonia, neonatal feeding difficulties, hypersomnolence and dysmorphic features were prominent clinical features in PURA syndrome. There was no significant difference between two groups in incidence of neonatal problems, developmental delay and common medical comorbidities. We observed a higher frequency of abnormal brain MRI and specific facial dysmorphism in 5q31.3 microdeletion group. This is the first work describing a largest cohort of Mainland China patients broaden the clinical and molecular spectrum of PURA-NDDs. Our findings not only demonstrated that PURA haploinsufficiency was a major contributor to the important phenotypes of 5q31.3 microdeletion, but also implied that additional genes still played a role in the 5q31.3 microdeletion.


Asunto(s)
Anomalías Múltiples , Trastornos de los Cromosomas , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Pueblos del Este de Asia , Deleción Cromosómica , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Epilepsia/genética , Anomalías Múltiples/genética , Estudios de Asociación Genética , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
17.
Clin Genet ; 103(2): 190-199, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36309956

RESUMEN

Variant prioritization is a crucial step in the analysis of exome and genome sequencing. Multiple phenotype-driven tools have been developed to automate the variant prioritization process, but the efficacy of these tools in clinical setting with fuzzy phenotypic information and whether ensemble of these tools could outperform single algorithm remains to be assessed. A large rare disease cohort with heterogeneous phenotypic information, including a primary cohort of 1614 patients and a replication cohort of 1904 patients referred to exome sequencing, were recruited to assess the efficacy of variant prioritization and their ensemble. Three freely available tools-Exomiser, Xrare, and DeepPVP-and their ensemble were evaluated. The performance of all three tools was influenced by the attributes of phenotypic input. When combining these three tools by weighted-sum entropy method (EWE3), the ensemble outperformed any single algorithm, achieving a rate of 78% diagnostic variants in top 3 (13% improvement over current best performer, compared to Exomiser: 63%, Xrare: 65%, and DeepPVP: 51%), 88% in top 10 and 96% in top 30. The results were replicated in another independent cohort. Our study supports using entropy-weighted ensemble of multiple tools to improve variant prioritization and accelerate molecular diagnosis in exome/genome sequencing.


Asunto(s)
Algoritmos , Exoma , Humanos , Exoma/genética , Entropía , Fenotipo , Enfermedades Raras/genética , Programas Informáticos
19.
Mol Genet Genomic Med ; 10(11): e2067, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36153650

RESUMEN

BACKGROUND: Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant syndrome, which is caused by the heterozygous germline loss-of-function variants in CTNNB1. METHODS: We evaluated the clinical and genetic findings of 24 previously undescribed Chinese patients affected by CTNNB1-related disorders and explored the possible ethnicity-related phenotypic variations. RESULTS: Twenty-one loss-of-function variants were identified within these 24 NEDSDV patients, including 14 novel CTNNB1 variants and 7 recurrent ones. The prominent clinical manifestations in our cohort are developmental delay/intellectual disability (100%), motor delay (100%), speech impairment (100%), dystonia (87.5%) and microcephaly (69.6%). The common facial dysmorphisms were consistent with previous reports, including wide nasal bridge (58.3%), bulbous nose (45.8%), long philtrum (45.8%) and thin upper lip (45.8%). In addition, 19 patients (79.2%) in our cohort had mild visual defects, while one affected individual (4.2%) had familial exudative vitreoretinopathy. Notably, we discovered that 20 patients (83.3%) exhibited various behavioral abnormalities, which is described in Chinese patients for the first time. CONCLUSION: We provided the largest known Chinese cohort with pathogenic CTNNB1 variants, which not only helps to expand the variant spectrum of CTNNB1 gene, but further delineates the typical phenotype of this disorder in Chinese population.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Fenotipo , Síndrome , China , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...