Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Parasitol Drugs Drug Resist ; 25: 100551, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38875756

RESUMEN

Cryptosporidium parvum is a waterborne and foodborne zoonotic protozoan parasite, a causative agent of moderate to severe diarrheal diseases in humans and animals. However, fully effective treatments are unavailable for medical and veterinary uses. There is a need to explore new drug targets for potential development of new therapeutics. Because C. parvum relies on anaerobic metabolism to produce ATP, fermentative enzymes in this parasite are attractive targets for exploration. In this study, we investigated the ethanol-fermentation in the parasite and characterized the basic biochemical features of a bacterial-type bifunctional aldehyde/alcohol dehydrogenase, namely CpAdhE. We also screened 3892 chemical entries from three libraries and identified 14 compounds showing >50% inhibition on the enzyme activity of CpAdhE. Intriguingly, antifungal imidazoles and unsaturated fatty acids are the two major chemical groups among the top hits. We further characterized the inhibitory kinetics of selected imidazoles and unsaturated fatty acids on CpAdhE. These compounds displayed lower micromolar activities on CpAdhE (i.e., IC50 values ranging from 0.88 to 11.02 µM for imidazoles and 8.93 to 35.33 µM for unsaturated fatty acids). Finally, we evaluated the in vitro anti-cryptosporidial efficacies and cytotoxicity of three imidazoles (i.e., tioconazole, miconazole and isoconazole). The three antifungal imidazoles exhibited lower micromolar efficacies against the growth of C. parvum in vitro (EC50 values ranging from 4.85 to 10.41 µM and selectivity indices ranging from 5.19 to 10.95). The results provide a proof-of-concept data to support that imidazoles are worth being further investigated for potential development of anti-cryptosporidial therapeutics.

2.
Front Microbiol ; 14: 1141952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065111

RESUMEN

The antiparasitic drug halofuginone is important for controlling apicomplexan parasites. However, the occurrence of halofuginone resistance is a major obstacle for it to the treatment of apicomplexan parasites. Current studies have identified the molecular marker and drug resistance mechanisms of halofuginone in Plasmodium falciparum. In this study, we tried to use transcriptomic data to explore resistance mechanisms of halofuginone in apicomplexan parasites of the genus Eimeria (Apicomplexa: Eimeriidae). After halofuginone treatment of E. tenella parasites, transcriptome analysis was performed using samples derived from both resistant and sensitive strains. In the sensitive group, DEGs associated with enzymes were significantly downregulated, whereas the DNA damaging process was upregulated after halofuginone treatment, revealing the mechanism of halofuginone-induced parasite death. In addition, 1,325 differentially expressed genes (DEGs) were detected between halofuginone resistant and sensitive strains, and the DEGs related to translation were significantly downregulated after halofuginone induction. Overall, our results provide a gene expression profile for further studies on the mechanism of halofuginone resistance in E. tenella.

3.
iScience ; 26(4): 106334, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968087

RESUMEN

The control of coccidiosis, causing huge economic losses in the poultry industry, is facing the stagnation of the development of new drugs and the emergence of drug resistance. Thus, the priority for coccidiosis control is to decipher the effect mechanisms and resistance mechanisms of anticoccidial drugs. In this study, we mined and validated a molecular marker for halofuginone resistance in Eimeria tenella through forward and reverse genetic approaches. We screened whole-genome sequencing data and detected point mutations in the ETH2_1020900 gene (encoding prolyl-tRNA synthetase, PRS). Then, we introduced this mutated gene into E. tenella and Toxoplasma gondii and validated that overexpression of this mutated gene confers resistance to halofuginone in vivo and in vitro. These results together show that mutations A1852G and A1854G on the ETH2_1020900 gene are pivotal to halofuginone resistance in E. tenella, encouraging the exploration of mechanisms of drug resistance against other anticoccidial drugs in eimerian parasites.

4.
J Vet Med Sci ; 83(5): 793-797, 2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-33731498

RESUMEN

A year-round molecular epidemiological survey (2017 to 2018) was conducted on three hemoplasmas and two Bartonella species with zoonotic potential in client-owned cats in Beijing and Shanghai. Among 668 specimens, the overall hemoplasma-positive rate was 4.9% (3.4% for Candidatus Mycoplasma haemominutum, 0.9% for Mycoplasma haemofelis and 1.2% for Candidatus Mycoplasma turicensis). The overall Bartonella-positive rate was 8.5% (4.8% for B. henselae and 4.3% for B. clarridgeiae). Age, breed, ectoparasiticide use and stray history, but not city, season and gender, were significantly associated with the positive rates of one or more pathogens. This is also the first report on the prevalence of Candidatus Mycoplasma turicensis in cats in China.


Asunto(s)
Bartonella , Enfermedades de los Gatos , Infecciones por Mycoplasma , Animales , Beijing , Enfermedades de los Gatos/epidemiología , Gatos , China/epidemiología , ADN Bacteriano , Mycoplasma , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Prevalencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-32158750

RESUMEN

Eimeria species are pathogenic protozoa with a wide range of hosts and the cause of poultry coccidiosis, which results in huge economic losses to the poultry industry. These parasites encode a genome of ∼8000 genes that control a highly coordinated life cycle of asexual replication and sexual differentiation, transmission, and virulence. However, the function and physiological importance of the large majority of these genes remain unknown mostly due to the lack of tools for systematic analysis of gene functions. Here, we report the first application of CRISPR-Cas9 gene editing technology in Eimeria tenella for analysis of gene function at a single gene level as well as for systematic functional analysis of an entire gene family. Using a transgenic line constitutively expressing Cas9, we demonstrated successful and efficient loss of function through non-homologous end joining as well as guided homologous recombination. Application of this approach to the study of the localization of EtGRA9 revealed that the gene encodes a secreted protein whose cellular distribution varied during the life cycle. Systematic disruption of the ApiAp2 transcription factor gene family using this approach revealed that 23 of the 33 factors expressed by this parasite are essential for development and survival in the host. Our data thus establish CRISPR-Cas9 as a powerful technology for gene editing in Eimeria and will set the stage for systematic functional analysis of its genome to understand its biology and pathogenesis, and will make it possible to identify and validate new targets for coccidiosis therapy.

6.
Vet Res ; 51(1): 41, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160917

RESUMEN

Eimeria tenella has emerged as valuable model organism for studying the biology and immunology of protozoan parasites with the establishment of the reverse genetic manipulation platform. In this report, we described the application of CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (endonuclease) system for efficient genetic editing in E. tenella, and showed that the CRISPR/Cas9 system mediates site-specific double-strand DNA breaks with a single guide RNA. Using this system, we successfully tagged the endogenous microneme protein 2 (EtMic2) by inserting the red fluorescent protein into the C-terminal of EtMic2. Our results extended the utility of the CRISPR/Cas9-mediated genetic modification system to E. tenella, and opened a new avenue for targeted investigation of gene functions in apicomplexan parasites.


Asunto(s)
Sistemas CRISPR-Cas , Eimeria tenella/genética , Edición Génica/veterinaria , Genes Protozoarios
7.
Vet Parasitol ; 258: 30-37, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30105975

RESUMEN

Coccidiosis is a serious threat to the poultry industry, resulting in substantial economic losses worldwide. The effective development of alternative treatments for coccidiosis that does not involve chemotherapy drugs and does not result in antibiotic resistance relies on gaining a clearer understanding of the interaction between host intestinal microbiota and enteric coccidia. Here, we established an Eimeria tenella infection model in chickens and subsequently monitored the changes in the overall intestinal microbiome using 16S rRNA gene sequencing. We found that the gut (i.e. fecal) microbiota of infected chicken differed from that of uninfected naïve animals. Levels of non-pathogenic bacteria, including Lactobacillus and Faecalibacterium declined, whereas those of pathogenic bacteria, including Clostridium, Lysinibacillus, and Escherichia, increased over time in response to E. tenella infection. Similar dynamic changes of the fecal microbiota were observed in both Arbor Acres broilers and White Leghorn chickens, indicating that the perturbation of the microbiota was directly induced by E. tenella infection. Our findings could be used to further elucidate the serious damage to host health caused by coccidia infection, leading to the development of new effective treatment options for coccidiosis.


Asunto(s)
Pollos/parasitología , Eimeria tenella/patogenicidad , Microbioma Gastrointestinal/genética , Oocistos/fisiología , Animales , Ciego/parasitología , Ciego/patología , Coccidiosis/parasitología , Eimeria tenella/aislamiento & purificación , Heces/parasitología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/patología , ARN Ribosómico 16S/genética
8.
Parasitol Res ; 117(1): 35-43, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29150700

RESUMEN

Companion animals including dogs are one of the important components in One Health. Parasites may cause not only diseases in pet animals but also many zoonotic diseases infecting humans. In this study, we performed a survey of intestinal parasites in fecal specimens (n = 485) collected from outpatient pet dogs with diarrhea in Beijing, China, for the entire year of 2015 by microscopic examination (all parasites) and SSU rRNA-based nested PCR detection (Giardia and Cryptosporidium). We observed a total of 124 (25.6%) parasite-positive specimens that contained one or more parasites, including Giardia duodenalis (12.8%), Cryptosporidium spp. (4.9%), Cystoisospora spp. (4.3%), trichomonads (4.3%), Toxocara canis (3.5%), Trichuris vulpis (0.6%), and Dipylidium caninum (0.2%). Among the 55 dog breeds, infection rates were significantly higher in border collies and bulldogs, but lower in poodles (p < 0.05). Risk factor analysis suggested that age was negatively correlated with the infection rate (p < 0.00001), while vaccination and deworming in the past 12 months could significantly reduce the parasite infections (p < 0.01). Among the 62 Giardia-positive specimens, 21 were successfully assigned into assemblages using glutamate dehydrogenase (gdh) and/or beta-giardin (bg) genes, including assemblage D (n = 15), C (n = 5), and F (n = 1). Among the 24 Cryptosporidium-positive specimens by SSU rRNA PCR, 20 PCR amplicons could be sequenced and identified as Cryptosporidium canis (n = 20). Collectively, this study indicates that parasites are a significant group of pathogens in companion dogs in Beijing, and companion dogs may potentially transmit certain zoonotic parasites to humans, particularly those with weak or weakened immunity.


Asunto(s)
Criptosporidiosis/epidemiología , Cryptosporidium/genética , Diarrea/veterinaria , Enfermedades de los Perros/epidemiología , Giardia/genética , Giardiasis/veterinaria , Animales , China/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/clasificación , Diarrea/epidemiología , Diarrea/virología , Enfermedades de los Perros/parasitología , Perros , Heces/parasitología , Femenino , Giardia lamblia/genética , Giardiasis/epidemiología , Giardiasis/parasitología , Parasitosis Intestinales/parasitología , Parasitosis Intestinales/veterinaria , Masculino , Mascotas/parasitología , Reacción en Cadena de la Polimerasa , Prevalencia , Especificidad de la Especie
9.
J Eukaryot Microbiol ; 64(1): 4-17, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27222431

RESUMEN

We developed nested PCR protocols and performed a multiyear survey on the prevalence of several protozoan parasites in wild northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecoregion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood smears collected between 2010 and 2013). Coccidia, cryptosporidia, and microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples (n = 687), whereas histomona and hematozoa were undetected. Coccidia consisted of one major and two minor Eimeria species. Cryptosporidia were represented by a major unknown Cryptosporidium species and Cryptosporidium baileyi. Detected microsporidia species were highly diverse, in which only 11% were native avian parasites including Encephalitozoon hellem and Encephalitozoon cuniculi, whereas 33% were closely related to species from insects (e.g. Antonospora, Liebermannia, and Sporanauta). This survey suggests that coccidia infections are a significant risk factor in the health of wild quail while cryptosporidia and microsporidia may be much less significant than coccidiosis. In addition, the presence of E. hellem and E. cuniculi (known to cause opportunistic infections in humans) suggests that wild quail could serve as a reservoir for human microsporidian pathogens, and individuals with compromised or weakened immunity should probably take precautions while directly handling wild quail.


Asunto(s)
Enfermedades de las Aves/parasitología , Coccidios/aislamiento & purificación , Cryptosporidium/aislamiento & purificación , Microsporidios/aislamiento & purificación , Microsporidiosis/veterinaria , Infecciones Protozoarias en Animales/parasitología , Codorniz/parasitología , Trichomonadida/aislamiento & purificación , Tritrichomonas/aislamiento & purificación , Animales , Enfermedades de las Aves/epidemiología , Coccidios/genética , Colinus/parasitología , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/genética , ADN Protozoario/análisis , ADN Protozoario/genética , Heces/parasitología , Femenino , Masculino , Microsporidios/genética , Microsporidiosis/epidemiología , Microsporidiosis/parasitología , Oklahoma/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Infecciones Protozoarias en Animales/diagnóstico , Infecciones Protozoarias en Animales/epidemiología , Codorniz/sangre , Factores de Riesgo , Encuestas y Cuestionarios , Texas/epidemiología , Trichomonadida/genética , Tritrichomonas/genética
10.
Protist ; 165(5): 701-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25216472

RESUMEN

Cryptosporidium parvum may cause virtually untreatable infections in AIDS patients, and is recently identified as one of the top four diarrheal pathogens in children in developing countries. Cryptosporidium differs from other apicomplexans (e.g., Plasmodium and Toxoplasma) by lacking many metabolic pathways including the Krebs cycle and cytochrome-based respiratory chain, thus relying mainly on glycolysis for ATP production. Here we report the molecular and biochemical characterizations of a hexokinase in C. parvum (CpHK). Our phylogenetic reconstructions indicated that apicomplexan hexokinases including CpHK were highly divergent from those of humans and animals (i.e., at the base of the eukaryotic clade). CpHK displays unique kinetic features that differ from those in mammals and Toxoplasma gondii (TgHK) in the preference towards various hexoses and its capacity to use ATP and other NTPs. CpHK also displays substrate inhibition by ATP. Moreover, 2-deoxy-D-glucose (2DG) could not only inhibit the CpHK activity, but also the parasite growth in vitro at concentrations nontoxic to host cells (IC(50) = 0.54 mM). While the exact action of 2-deoxy-D-glucose on the parasite is subject to further verification, our data suggest that CpHK and the glycolytic pathway may be explored for developing anti-cryptosporidial therapeutics.


Asunto(s)
Cryptosporidium parvum/enzimología , Cryptosporidium parvum/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Desoxiglucosa , Inhibidores Enzimáticos/metabolismo , Hexosas/metabolismo , Concentración 50 Inhibidora , Cinética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia , Especificidad por Sustrato
11.
PLoS One ; 5(9): e12593, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20830297

RESUMEN

BACKGROUND: The trehalose synthetic pathway is present in bacteria, fungi, plants and invertebrate animals, but is absent in vertebrates. This disaccharide mainly functions as a stress protectant against desiccation, heat, cold and oxidation. Genes involved in trehalose synthesis have been observed in apicomplexan parasites, but little was known about these enzymes. Study on trehalose synthesis in apicomplexans would not only shed new light into the evolution of this pathway, but also provide data for exploring this pathway as novel drug target. METHODOLOGY/PRINCIPAL FINDINGS: We have observed the presence of the trehalose synthetic pathway in Cryptosporidium and other apicomplexans and alveolates. Two key enzymes (trehalose 6-phosphate synthase [T6PS; EC 2.4.1.15] and trehalose phosphatase [TPase; EC 3.1.3.12] are present as Class II bifunctional proteins (T6PS-TPase) in the majority of apicomplexans with the exception of Plasmodium species. The enzyme for synthesizing the precursor (UDP-glucose) is homologous to dual-substrate UDP-galactose/glucose pyrophosphorylases (UGGPases), rather than the "classic" UDP-glucose pyrophosphorylase (UGPase). Phylogenetic recontructions indicate that both T6PS-TPases and UGGPases in apicomplexans and other alveolates are evolutionarily affiliated with stramenopiles and plants. The expression level of T6PS-TPase in C. parvum is highly elevated in the late intracellular developmental stage prior to or during the production of oocysts, implying that trehalose may be important in oocysts as a protectant against environmental stresses. Finally, trehalose has been detected in C. parvum oocysts, thus confirming the trehalose synthetic activity in this parasite. CONCLUSIONS/SIGNIFICANCE: A trehalose synthetic pathway is described in the majority of apicomplexan parasites including Cryptosporidium and the presence of trehalose was confirmed in the C. parvum oocyst. Key enzymes in the pathway (i.e., T6PS-TPase and UGGPase) are plant-type and absent in humans and animals, and may potentially serve as novel drug targets in the apicomplexans.


Asunto(s)
Apicomplexa/metabolismo , Cryptosporidium/metabolismo , Trehalosa/biosíntesis , Apicomplexa/clasificación , Apicomplexa/enzimología , Apicomplexa/genética , Vías Biosintéticas , Cryptosporidium/clasificación , Cryptosporidium/enzimología , Cryptosporidium/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...