Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): eabn4732, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943926

RESUMEN

Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.


Asunto(s)
Transferencia de Energía , Miniaturización , Prótesis e Implantes , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Cuerpo Humano
2.
IEEE J Solid-State Circuits ; 57(3): 818-830, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36275505

RESUMEN

This paper presents a hardware platform including stimulating implants wirelessly powered and controlled by a shared transmitter for coordinated leadless multisite stimulation. The adopted novel single-transmitter, multiple-implant structure can flexibly deploy stimuli, improve system efficiency, easily scale stimulating channel quantity and relieve efforts in device synchronization. In the proposed system, a wireless link leveraging magnetoelectric effects is co-designed with a robust and efficient system-on-chip to enable reliable operation and individual programming of every implant. Each implant integrates a 0.8-mm2 chip, a 6-mm2 magnetoelectric film, and an energy storage capacitor within a 6.2-mm3 size. Magnetoelectric power transfer is capable of safely transmitting milliwatt power to devices placed several centimeters away from the transmitter coil, maintaining good efficiency with size constraints and tolerating 60-degree, 1.5-cm misalignment in angular and lateral movement. The SoC robustly operates with 2-V source amplitude variations that spans a 40-mm transmitter-implant distance change, realizes individual addressability through physical unclonable function IDs, and achieves 90% efficiency for 1.5-to-3.5-V stimulation with fully programmable stimulation parameters.

3.
Nat Biomed Eng ; 6(6): 706-716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361934

RESUMEN

Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals' sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Animales , Suministros de Energía Eléctrica , Prueba de Estudio Conceptual , Ratas , Nervio Ciático , Porcinos
4.
IEEE Trans Biomed Circuits Syst ; 14(6): 1241-1252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33180732

RESUMEN

This paper presents the first wireless and programmable neural stimulator leveraging magnetoelectric (ME) effects for power and data transfer. Thanks to low tissue absorption, low misalignment sensitivity and high power transfer efficiency, the ME effect enables safe delivery of high power levels (a few milliwatts) at low resonant frequencies (  âˆ¼ 250 kHz) to mm-sized implants deep inside the body (30-mm depth). The presented MagNI (Magnetoelectric Neural Implant) consists of a 1.5-mm 2 180-nm CMOS chip, an in-house built 4 × 2 mm ME film, an energy storage capacitor, and on-board electrodes on a flexible polyimide substrate with a total volume of 8.2 mm 3. The chip with a power consumption of 23.7  µW includes robust system control and data recovery mechanisms under source amplitude variations (1-V variation tolerance). The system delivers fully-programmable bi-phasic current-controlled stimulation with patterns covering 0.05-to-1.5-mA amplitude, 64-to-512- µs pulse width, and 0-to-200-Hz repetition frequency for neurostimulation.


Asunto(s)
Campos Electromagnéticos , Neuroestimuladores Implantables , Tecnología Inalámbrica/instrumentación , Electrodos , Diseño de Prótesis
5.
Neuron ; 108(2): 302-321, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33120025

RESUMEN

Electrical neural interfaces serve as direct communication pathways that connect the nervous system with the external world. Technological advances in this domain are providing increasingly more powerful tools to study, restore, and augment neural functions. Yet, the complexities of the nervous system give rise to substantial challenges in the design, fabrication, and system-level integration of these functional devices. In this review, we present snapshots of the latest progresses in electrical neural interfaces, with an emphasis on advances that expand the spatiotemporal resolution and extent of mapping and manipulating brain circuits. We include discussions of large-scale, long-lasting neural recording; wireless, miniaturized implants; signal transmission, amplification, and processing; as well as the integration of interfaces with optical modalities. We outline the background and rationale of these developments and share insights into the future directions and new opportunities they enable.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Estimulación Eléctrica/instrumentación , Neuronas/fisiología , Neurociencias/instrumentación , Animales , Estimulación Eléctrica/métodos , Electrodos Implantados , Humanos , Neurociencias/métodos , Telemetría
6.
Sensors (Basel) ; 18(2)2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-29382183

RESUMEN

High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-µm complementary metal-oxide-semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900- µ m 2 chip area and achieves 0.022-2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1-15 nF. The prototype amplifier consumes 7.6 µ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...