Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958498

RESUMEN

Bioactive lipids are involved in cellular signalling events with links to human disease. Many of these are involved in inflammation under normal and pathological conditions. Despite being attractive molecules from a pharmacological point of view, the detection and quantification of lipids has been a major challenge. Here, we have optimised a liquid chromatography-dynamic multiple reaction monitoring-targeted mass spectrometry (LC-dMRM-MS) approach to profile eicosanoids and fatty acids in biological samples. In particular, by applying this analytic workflow to study a cellular model of chronic myeloid leukaemia (CML), we found that the levels of intra- and extracellular 2-Arachidonoylglycerol (2-AG), intracellular Arachidonic Acid (AA), extracellular Prostaglandin F2α (PGF2α), extracellular 5-Hydroxyeicosatetraenoic acid (5-HETE), extracellular Palmitic acid (PA, C16:0) and extracellular Stearic acid (SA, C18:0), were altered in response to immunomodulation by type I interferon (IFN-I), a currently approved treatment for CML. Our observations indicate changes in eicosanoid and fatty acid metabolism, with potential relevance in the context of cancer inflammation and CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Ácidos Grasos , Interferones , Espectrometría de Masas en Tándem/métodos , Eicosanoides/metabolismo , Inflamación
2.
Heliyon ; 9(10): e20076, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842619

RESUMEN

Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design.

3.
Cell Death Discov ; 9(1): 200, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386001

RESUMEN

Colorectal cancer possesses marked intratumoral heterogeneity. While subclonal interactions between Vogelstein driver mutations have been extensively studied, less is known about competitive or cooperative effects between subclonal populations with other cancer driver mutations. FBXW7 is a cancer driver mutation which is present in close to 17% of colorectal cancer cells. In this study, we generated isogenic FBXW7 mutant cells using CRISPR-Cas9. We identified an upregulation of oxidative phosphorylation and DNA damage in FBXW7 mutant cells, which surprisingly proliferated at a decreased rate compared to wildtype cells. To determine subclonal interactions, wildtype and mutant FBXW7 cells were cocultured using a Transwell system. Wildtype cells cocultured with FBXW7 mutant cells similarly developed DNA damage which was not observed when wildtype cells were co-cultured with other wildtype cells, suggesting that FBXW7 mutant cells were inducing DNA damage in neighbouring wildtype cells. Using mass spectrometry, we identified AKAP8 as being secreted by FBXW7 mutant cells into the coculture media. Furthermore, overexpression of AKAP8 in wildtype cells recapitulated the DNA damage phenotype observed during coculture, while co-culture of wildtype cells with double mutant FBXW7-/-/AKAP8-/- cells abrogated the DNA damage phenotype. Here, we describe a hitherto unknown phenomenon of AKAP8-mediated DNA damage from FBXW7 mutant to neighbouring wildtype cells. Our findings demonstrate the importance of elucidating the local effect of cancer driver mutations between subclonal populations.

4.
Cell Rep ; 35(6): 109101, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979616

RESUMEN

Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPß binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPß, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPß binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.


Asunto(s)
Arginina/metabolismo , Cromatina/metabolismo , Evasión Inmune/genética , Neoplasias/genética , Linfocitos T/metabolismo , Animales , Humanos
5.
Cell Mol Life Sci ; 78(6): 3021-3044, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33230565

RESUMEN

Arginine deprivation therapy (ADT) is a new metabolic targeting approach with high therapeutic potential for various solid cancers. Combination of ADT with low doses of the natural arginine analog canavanine effectively sensitizes malignant cells to irradiation. However, the molecular mechanisms determining the sensitivity of intrinsically non-auxotrophic cancers to arginine deficiency are still poorly understood. We here show for the first time that arginine deficiency is accompanied by global metabolic changes and protein/membrane breakdown, and results in the induction of specific, more or less pronounced (severe vs. mild) ER stress responses in head and neck squamous cell carcinoma (HNSCC) cells that differ in their intrinsic ADT sensitivity. Combination of ADT with canavanine triggered catastrophic ER stress via the eIF2α-ATF4(GADD34)-CHOP pathway, thereby inducing apoptosis; the same signaling arm was irrelevant in ADT-related radiosensitization. The particular strong supra-additive effect of ADT, canavanine and irradiation in both intrinsically more and less sensitive cancer cells supports the rational of ER stress pathways as novel target for improving multi-modal metabolic anti-cancer therapy.


Asunto(s)
Canavanina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Rayos X , Factor de Transcripción Activador 4/antagonistas & inhibidores , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis/efectos de los fármacos , Arginina/deficiencia , Arginina/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/química , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Factor de Transcripción CHOP/antagonistas & inhibidores , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
6.
Mol Cell ; 76(1): 110-125.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31474573

RESUMEN

Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.


Asunto(s)
Autofagia/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Senescencia Celular/efectos de los fármacos , Inmunosenescencia/efectos de los fármacos , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Espermidina/farmacología , Inmunidad Adaptativa/efectos de los fármacos , Factores de Edad , Envejecimiento , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células HEK293 , Humanos , Memoria Inmunológica/efectos de los fármacos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Factor 5A Eucariótico de Iniciación de Traducción
7.
Front Immunol ; 10: 1860, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456800

RESUMEN

Lipid metabolism plays a key role in many cellular processes. We show here that regulatory T cells have enhanced lipid storage within subcellular lipid droplets (LD). They also express elevated amounts of both isoforms of diacylglycerol acyl transferase (DGAT1 & 2), enzymes required for the terminal step of triacylglycerol synthesis. In regulatory T-cells (Tregs), the conversion of diacylglycerols to triacylglycerols serves two additional purposes other than lipid storage. First, we demonstrate that it protects T cells from the toxic effects of saturated long chain fatty acids. Second, we show that Triglyceride formation is essential for limiting activation of protein kinase C via free diacyl glycerol moieties. Inhibition of DGAT1 resulted in elevated active PKC and nuclear NFKB, as well as impaired Foxp3 induction in response to TGFß. Thus, Tregs utilize a positive feedback mechanism to promote sustained expression of Foxp3 associated with control of LD formation.


Asunto(s)
Factores de Transcripción Forkhead/genética , Linfocitos T Reguladores/metabolismo , Triglicéridos/metabolismo , Animales , Antígenos CD2/genética , Antígeno CD52/genética , Línea Celular , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Femenino , Factores de Transcripción Forkhead/biosíntesis , Humanos , Gotas Lipídicas/metabolismo , Metaboloma , Ratones , Proteína Quinasa C/metabolismo , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología
8.
Talanta ; 199: 184-188, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952244

RESUMEN

Polyamines are a class of poly-cationic aliphatic amines, playing a role in different cellular processes such as maintaining intracellular pH and membrane potential that are relevant for general cellular physiology and ageing. The development of analytical methods for detection and quantitation of this class of compounds has been challenging due to the basic nature of these species. Both liquid chromatography (LC) and gas chromatography (GC) have been applied for separation, mostly coupled to mass spectrometry (MS) for detection. However, current methodologies suffer from lengthy extraction protocols and limitations in separation and detection levels. Here, we present a simplified and optimised method for straightforward extraction of polyamine metabolites including spermine, spermidine, norspermidine, cadaverine and putrescine from cellular and tissue material. We demonstrate that strong acid-based extraction and chemical derivatisation not only improves isolation, but also recovery. Combined with two-dimensional gas chromatography, this method provides clear separation and femtomole sensitivity for the profiling of polyamines.

9.
Mol Cell Proteomics ; 18(7): 1330-1344, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010818

RESUMEN

Rapidly proliferating cells reshape their metabolism to satisfy their ever-lasting need for cellular building blocks. This phenomenon is exemplified in certain malignant conditions such as cancer but also during embryonic development when cells rely heavily on glycolytic metabolism to exploit its metabolic intermediates for biosynthetic processes. How cells reshape their metabolism is not fully understood. Here we report that loss of cathepsin L (Cts L) is associated with a fast proliferation rate and enhanced glycolytic metabolism that depend on lactate dehydrogenase A (LDHA) activity. Using mass spectrometry analysis of cells treated with a pan cathepsin inhibitor, we observed an increased abundance of proteins involved in central carbon metabolism. Further inspection of putative Cts L targets revealed an enrichment for glycolytic metabolism that was independently confirmed by metabolomic and biochemical analyses. Moreover, proteomic analysis of Cts L-knockout cells identified LDHA overexpression that was demonstrated to be a key metabolic junction in these cells. Lastly, we show that Cts L inhibition led to increased LDHA protein expression, suggesting a causal relationship between LDHA expression and function. In conclusion, we propose that Cts L regulates this metabolic circuit to keep cell division under control, suggesting the therapeutic potential of targeting this protein and its networks in cancer.


Asunto(s)
Catepsina L/metabolismo , Redes y Vías Metabólicas , Animales , Proliferación Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Glucólisis , Células HeLa , Humanos , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Lipogénesis , Espectrometría de Masas , Metabolómica , Ratones , Células 3T3 NIH , Fenotipo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Sci Rep ; 8(1): 8539, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867102

RESUMEN

Ischaemia and reperfusion injury (IRI) is the leading cause of acute kidney injury (AKI), which contributes to high morbidity and mortality rates in a wide range of injuries as well as the development of chronic kidney disease. The cellular and molecular responses of the kidney to IRI are complex and not fully understood. Here, we used an integrated proteomic and metabolomic approach to investigate the effects of IRI on protein abundance and metabolite levels. Rat kidneys were subjected to 45 min of warm ischaemia followed by 4 h and 24 h reperfusion, with contralateral and separate healthy kidneys serving as controls. Kidney tissue proteomics after IRI revealed elevated proteins belonging to the acute phase response, coagulation and complement pathways, and fatty acid (FA) signalling. Metabolic changes were already evident after 4 h reperfusion and showed increased level of glycolysis, lipids and FAs, whilst mitochondrial function and ATP production was impaired after 24 h. This deficit was partially compensated for by the contralateral kidney. Such a metabolic balance counteracts for the developing energy deficit due to reduced mitochondrial function in the injured kidney.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/metabolismo , Metabolómica , Proteómica , Daño por Reperfusión/metabolismo , Animales , Ácidos Grasos/metabolismo , Glucólisis , Riñón/patología , Enfermedades Renales/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteoma/metabolismo , Ratas , Ratas Endogámicas F344 , Daño por Reperfusión/patología , Transducción de Señal
11.
Immunity ; 47(3): 466-480.e5, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28916263

RESUMEN

Neutrophils are critical and short-lived mediators of innate immunity that require constant replenishment. Their differentiation in the bone marrow requires extensive cytoplasmic and nuclear remodeling, but the processes governing these energy-consuming changes are unknown. While previous studies show that autophagy is required for differentiation of other blood cell lineages, its function during granulopoiesis has remained elusive. Here, we have shown that metabolism and autophagy are developmentally programmed and essential for neutrophil differentiation in vivo. Atg7-deficient neutrophil precursors had increased glycolytic activity but impaired mitochondrial respiration, decreased ATP production, and accumulated lipid droplets. Inhibiting autophagy-mediated lipid degradation or fatty acid oxidation alone was sufficient to cause defective differentiation, while administration of fatty acids or pyruvate for mitochondrial respiration rescued differentiation in autophagy-deficient neutrophil precursors. Together, we show that autophagy-mediated lipolysis provides free fatty acids to support a mitochondrial respiration pathway essential to neutrophil differentiation.


Asunto(s)
Autofagia , Diferenciación Celular , Ácidos Grasos no Esterificados/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Adaptación Biológica , Animales , Análisis por Conglomerados , Metabolismo Energético , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Metabolismo de los Lípidos , Lipólisis , Mielopoyesis , Neutrófilos/ultraestructura , Oxidación-Reducción , Ácido Pirúvico/metabolismo
12.
Talanta ; 165: 685-691, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153317

RESUMEN

Two-dimensional gas chromatography mass spectrometry (GCxGC-MS) is utilized to an increasing extent in biomedical metabolomics. Here, we established and adapted metabolite extraction and derivatization protocols for cell/tissue biopsy, serum and urine samples according to their individual properties. GCxGC-MS analysis revealed detection of ~600 molecular features from which 165 were characterized representing different classes such as amino acids, fatty acids, lipids, carbohydrates, nucleotides and small polar components of glycolysis and the Krebs cycle using electron impact (EI) spectrum matching and validation using external standard compounds. Advantages of two-dimensional gas chromatography based resolution were demonstrated by optimizing gradient length and separation through modulation between the first and second column, leading to a marked increase in metabolite identification due to improved separation as exemplified for lactate versus pyruvate, talopyranose versus methyl palmitate and inosine versus docosahexaenoic acid. Our results demonstrate that GCxGC-MS represents a robust metabolomics platform for discovery and targeted studies that can be used with samples derived from the clinic.


Asunto(s)
Biomarcadores/análisis , Células/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/normas , Metabolómica/métodos , Suero/metabolismo , Urinálisis/métodos , Humanos , Metaboloma
13.
J Biotechnol ; 242: 30-54, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27932276

RESUMEN

Pathological alterations in cell functions are frequently accompanied by metabolic reprogramming including modifications in amino acid metabolism. Amino acid detection is thus integral to the diagnosis of many hereditary metabolic diseases. The development of malignant diseases as metabolic disorders comes along with a complex dysregulation of genetic and epigenetic factors affecting metabolic enzymes. Cancer cells might transiently or permanently become auxotrophic for non-essential or semi-essential amino acids such as asparagine or arginine. Also, transformed cells are often more susceptible to local shortage of essential amino acids such as methionine than normal tissues. This offers new points of attacking unique metabolic features in cancer cells. To better understand these processes, highly sensitive methods for amino acid detection and quantification are required. Our review summarizes the main methodologies for amino acid detection with a particular focus on applications in biomedicine and cancer, provides a historical overview of the methodological pre-requisites in amino acid analytics. We compare classical and modern approaches such as the combination of gas chromatography and liquid chromatography with mass spectrometry (GC-MS/LC-MS). The latter is increasingly applied in clinical routine. We therefore illustrate an LC-MS workflow for analyzing arginine and methionine as well as their precursors and analogs in biological material. Pitfalls during protocol development are discussed, but LC-MS emerges as a reliable and sensitive tool for the detection of amino acids in biological matrices. Quantification is challenging, but of particular interest in cancer research as targeting arginine and methionine turnover in cancer cells represent novel treatment strategies.


Asunto(s)
Aminoácidos/análisis , Neoplasias/diagnóstico , Neoplasias/terapia , Aminoácidos/metabolismo , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Electroforesis/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Ratones , Neoplasias/química , Neoplasias/metabolismo
14.
Sci Rep ; 6: 24491, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27080861

RESUMEN

Interleukin (IL)-23 mediated signal transduction represents a major molecular mechanism underlying the pathology of inflammatory bowel disease, Crohn's disease and ulcerative colitis. In addition, emerging evidence supports the role of IL-23-driven Th17 cells in inflammation. Components of the IL-23 signaling pathway, such as IL-23R, JAK2 and STAT3, have been characterized, but elements unique to this network as compared to other interleukins have not been readily explored. In this study, we have undertaken an integrative phosphoproteomics approach to better characterise downstream signaling events. To this end, we performed and compared phosphopeptide and phosphoprotein enrichment methodologies after activation of T lymphocytes by IL-23. We demonstrate the complementary nature of the two phosphoenrichment approaches by maximizing the capture of phosphorylation events. A total of 8202 unique phosphopeptides, and 4317 unique proteins were identified, amongst which STAT3, PKM2, CDK6 and LASP-1 showed induction of specific phosphorylation not readily observed after IL-2 stimulation. Interestingly, quantitative analysis revealed predominant phosphorylation of pre-existing STAT3 nuclear subsets in addition to translocation of phosphorylated STAT3 within 30 min after IL-23 stimulation. After IL-23R activation, a small subset of PKM2 also translocates to the nucleus and may contribute to STAT3 phosphorylation, suggesting multiple cellular responses including metabolic adaptation.


Asunto(s)
Metabolismo Energético , Linfocitos/metabolismo , Fosfoproteínas/metabolismo , Proteómica , Receptores de Interleucina/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Adaptación Biológica , Proteínas Portadoras/metabolismo , Bases de Datos de Proteínas , Glucólisis , Humanos , Interleucina-23/farmacología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Fosfopéptidos/metabolismo , Fosforilación , Proteómica/métodos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
15.
J Cell Sci ; 129(1): 108-20, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26729029

RESUMEN

TNF is a primitive protein that has emerged from more than 550 million years of evolution. Our bioinformatics study of TNF from nine different taxa in vertebrates revealed several conserved regions in the TNF sequence. By screening overlapping peptides derived from human TNF to determine their role in three different TNF-induced processes--apoptosis, necrosis and NF-κB stimulation--we found that TNF conserved regions are mostly related to cell death rather than NF-κB stimulation. Among the most conserved regions, peptides (P)12, P13 and P1213 (comprising P12 and P13) induced apoptosis, whereas P14, P15, P16 and P1516 (comprising P15 and P16) induced necrosis. Cell death induced by these peptides was not through binding to the TNF receptor. P16-induced necrosis was mainly through disruption of the cell membrane, whereas P1213-induced apoptosis involved activation of TRADD followed by formation of complex II. Finally, using a monoclonal antibody and a mutant TNF protein, we show that TNF-induced apoptosis is determined by a conserved linear sequence that corresponds to that within P1213. Our results reveal the determinant sequence that is key to the TNF primitive function of inducing apoptosis.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/metabolismo , Secuencia de Aminoácidos , Animales , Caspasa 8/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Células Jurkat , Ratones , Datos de Secuencia Molecular , Proteínas de Complejo Poro Nuclear/metabolismo , Péptidos/química , Péptidos/farmacología , Proteínas de Unión al ARN/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Vertebrados
16.
J Biol Chem ; 284(14): 9184-91, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19193636

RESUMEN

To better understand the mechanisms of intracellular trafficking and presentation of exogenous peptides by antigen-presenting cells (APC), we compared the handling of overlapping 24-mer peptides from HIV Nef either mixed or covalently linked in tandem in one protein. Once internalized, peptides trafficked not only to endosomes but also to cytosol, and activated CD8(+) and CD4(+) T cells. In contrast, whole protein was found to traffic only to the endosomal compartments, and primarily activated CD4(+) T cells. Finally, with adjuvant, overlapping peptides were capable of protecting against lethal viral challenge, whereas the intact protein was less protective. These data suggest that overlapping long peptides are cross-presented through more varied intracellular routes and are more efficient in priming protective immunity than the whole protein.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Presentación de Antígeno/inmunología , Células Cultivadas , Células Dendríticas/metabolismo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Fenotipo , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
17.
Appl Spectrosc ; 58(11): 1282-7, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18070405

RESUMEN

In solid-phase combinatorial chemistry, analyses are performed using a wide range of analytical techniques ranging from gel-phase nuclear magnetic resonance (NMR) to colorimetric tests to elemental analysis. However, these techniques cannot be used to interrogate functional group distribution at the single-bead level. This paper explores the feasibility of using Fourier transform infrared (FT-IR) microscopy to examine site distribution on chloromethylated polystyrene resin beads and to quantify the loading after coupling with 4-cyanophenol, an IR tagging agent. FT-IR microscopy also provides a unique opportunity to better understand the reactivity of highly cross-linked polymer beads under a range of chemical conditions.

18.
Curr Opin Chem Biol ; 6(3): 347-52, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12023116

RESUMEN

Over the past year, numerous techniques have been used to study the resins commonly utilised in solid-phase synthesis to allow a greater understanding of the chemical nature and the physical properties of the supports. In addition, to overcome some of the drawbacks of existing materials, several new resins and new methods of handling solid supports have been developed. New methodologies have also been introduced to simplify the preparation of solid supports.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Polímeros/química , Resinas de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA