Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Insights Imaging ; 15(1): 111, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713377

RESUMEN

OBJECTIVES: To noninvasively detect prostate cancer and predict the Gleason grade using single-modality T2-weighted imaging with a deep-learning approach. METHODS: Patients with prostate cancer, confirmed by histopathology, who underwent magnetic resonance imaging examinations at our hospital during September 2015-June 2022 were retrospectively included in an internal dataset. An external dataset from another medical center and a public challenge dataset were used for external validation. A deep-learning approach was designed for prostate cancer detection and Gleason grade prediction. The area under the curve (AUC) was calculated to compare the model performance. RESULTS: For prostate cancer detection, the internal datasets comprised data from 195 healthy individuals (age: 57.27 ± 14.45 years) and 302 patients (age: 72.20 ± 8.34 years) diagnosed with prostate cancer. The AUC of our model for prostate cancer detection in the validation set (n = 96, 19.7%) was 0.918. For Gleason grade prediction, datasets comprising data from 283 of 302 patients with prostate cancer were used, with 227 (age: 72.06 ± 7.98 years) and 56 (age: 72.78 ± 9.49 years) patients being used for training and testing, respectively. The external and public challenge datasets comprised data from 48 (age: 72.19 ± 7.81 years) and 91 patients (unavailable information on age), respectively. The AUC of our model for Gleason grade prediction in the training set (n = 227) was 0.902, whereas those of the validation (n = 56), external validation (n = 48), and public challenge validation sets (n = 91) were 0.854, 0.776, and 0.838, respectively. CONCLUSION: Through multicenter dataset validation, our proposed deep-learning method could detect prostate cancer and predict the Gleason grade better than human experts. CRITICAL RELEVANCE STATEMENT: Precise prostate cancer detection and Gleason grade prediction have great significance for clinical treatment and decision making. KEY POINTS: Prostate segmentation is easier to annotate than prostate cancer lesions for radiologists. Our deep-learning method detected prostate cancer and predicted the Gleason grade, outperforming human experts. Non-invasive Gleason grade prediction can reduce the number of unnecessary biopsies.

2.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691765

RESUMEN

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Carbono , Técnicas Electroquímicas , Hierro , Mediciones Luminiscentes , MicroARNs , Puntos Cuánticos , MicroARNs/análisis , Carbono/química , Hierro/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Humanos , Técnicas Biosensibles/métodos , Límite de Detección
3.
Aging Cell ; 23(4): e14157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558485

RESUMEN

A recently proposed principal law of lifespan (PLOSP) proposes to extend the whole human lifespan by elongating different life stages. As the preborn stage of a human being, gestation is the foundation for the healthy development of the human body. The antagonistic pleiotropy (AP) theory of aging states that there is a trade-off between early life fitness and late-life mortality. The question is whether slower development during the gestation period would be associated with a longer lifespan. Among all living creatures, the length of the gestation period is highly positively correlated to the length of the lifespan, although such a correlation is thought to be influenced by the body sizes of different species. While examining the relationship between lifespan length and body size within the same species, dogs exhibit a negative correlation between lifespans and body sizes, while there is no such correlation among domestic cats. For humans, most adverse gestational environments shorten the period of gestation, and their impacts are long-term. While many issues remain unsolved, various developmental features have been linked to the conditions during the gestation period. Given that the length of human pregnancies can vary randomly by as long as 5 weeks, it is worth investigating whether a slow steady healthy gestation over a longer period will be related to a longer and healthier lifespan. This article discusses the potential benefits, negative impacts, and challenges of the relative elongation of the gestation period.


Asunto(s)
Envejecimiento , Longevidad , Embarazo , Femenino , Humanos , Animales , Perros , Gatos , Tamaño Corporal
4.
Front Plant Sci ; 15: 1330559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576788

RESUMEN

The GATA gene family belongs to a kind of transcriptional regulatory protein featuring a zinc finger motif, which is essential for plant growth and development. However, the identification of the GATA gene family in tetraploid potato is still not performed. In the present research, a total of 88 GATA genes in the tetraploid potato C88.v1 genome were identified by bioinformatics methods. These StGATA genes had an uneven distribution on 44 chromosomes, and the corresponding StGATA proteins were divided into four subfamilies (I-IV) based on phylogenetic analysis. The cis-elements of StGATA genes were identified, including multiple cis-elements related to light-responsive and hormone-responsive. The collinearity analysis indicates that segmental duplication is a key driving force for the expansion of GATA gene family in tetraploid potato, and that the GATA gene families of tetraploid potato and Arabidopsis share a closer evolutionary relationship than rice. The transcript profiling analysis showed that all 88 StGATA genes had tissue-specific expression, indicating that the StGATA gene family members participate in the development of multiple potato tissues. The RNA-seq analysis was also performed on the tuber flesh of two potato varieties with different color, and 18 differentially expressed GATA transcription factor genes were screened, of which eight genes were validated through qRT-PCR. In this study, we identified and characterized StGATA transcription factors in tetraploid potato for the first time, and screened differentially expressed genes in potato flesh with different color. It provides a theoretical basis for further understanding the StGATA gene family and its function in anthocyanin biosynthesis.

5.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442212

RESUMEN

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Humanos , Europio , Ligandos , ADN/química , Mediciones Luminiscentes/métodos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Geles , Técnicas Electroquímicas/métodos , Límite de Detección
6.
Fish Shellfish Immunol ; 148: 109513, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521141

RESUMEN

LPS induced TNF-α Factor (LITAF) is a transcription factor widely involving in activation of Tumor Necrosis Factor (TNF) and other cytokines in the inflammatory response. In the present study, a homologue of LITAF with a conserved LITAF domain was identified from the Pacific oyster Crassostrea gigas. The transcripts of CgLITAF were detected in all examined tissues with highest expression in hepatopancrease. The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgLITAF protein in haemocytes. While the mRNA level of CgLITAF changed slightly after LPS stimulation. When the siRNA of CgLITAF was injected to inhibit its expression, the apoptotic level of haemocytes decreased observably after LPS stimulation. Consistently, the transcripts of CgTNF3 and CgTNF4 (LOC105343080, LOC105341146), the apoptotic-related molecules including CgBax, CgCytochrome c, CgCaspase9 and CgCaspase3, were significantly suppressed in the CgLITAF-RNAi oysters. While the mRNA expression level of CgBcl was enhanced significantly in the CgLITAF-RNAi oysters. These results indicated that CgLITAF promoted haemocyte apoptosis by regulating the expression of apoptotic-related factors, suggesting its important role in the immune response of oysters.


Asunto(s)
Crassostrea , Animales , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Hemocitos , Apoptosis , Inmunidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad Innata/genética
7.
J Ethnopharmacol ; 328: 118072, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38508431

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Formula (BSF) is the effective traditional Chinese medicine (TCM) for chronic hepatitis B (CHB) according to our previous researches. However, the special effectiveness of BSF treating CHB patients in different stages and the immunoregulatory mechanisms remain to be explored. AIM OF THE STUDY: To compare the therapeutic effects of BSF in both treatment-naive patients and Peg-IFN-α-treated patients, and explore the potential mechanism of immunomodulation. MATERIALS AND METHODS: Ultra-high performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry and the TCMSP database were used to determine the main components of BSF. Two hundred and sixty-six patients were enrolled in the retrospective study, and they were divided into the treatment group (T-Group, BSF plus Peg-IFN-α) and the control group (C-Group, Peg-IFN-α monotherapy). Within each group, patients were further grouped into subgroups, namely T1/C1 groups (treatment-naive patients, T1 = 34, C1 = 94) and T2/C2 groups (Peg-IFN-α-treated patients, T2 = 56, C2 = 82). Serum HBV markers, serum HBV DNA levels, serum ALT/AST and TCM symptoms were obtained from the record. Bioinformatics analysis was employed to obtain the potential immunoregulatory mechanisms of BSF treating CHB patients. Among patients in T2 and C2 group, peripheral mononuclear cells from 36 patients were used to analyze the characteristics of peripheral follicular helper T (Tfh) cells and B-cell subtypes by flow cytometry. Preparation of BSF-containing serum in rats. In vitro, the co-culture system of CXCR5+ cells and HepG2.2.15 cells was built to investigate the immunoregulatory effects of BSF. RESULTS: A total of 14 main active compounds were detected in BSF, which were deemed critical for the treatment of CHB. Our findings indicated that the T2-Group exhibited the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the C2-Group (35.7% vs. 15.9%, P = 0.033; 33.9% vs. 11.0%, P = 0.002). Additionally, the T2-Group demonstrated the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the T1-Group (35.7% vs. 14.7%, P = 0.031; 33.9% vs. 2.9%, P = 0.000). The total effective rate based on TCM clinical syndrome in T1-Group and T2-Group were significantly greater than those in C1-Group and C2-Group (85.3% vs. 61.7%, P = 0.012; 89.1% vs. 63.4%, P = 0.000). Bioinformatics analysis indicated that the immunoregulatory mechanisms of BSF treating CHB patients were mainly linked to the growth and stimulation of B-cell, T-cell differentiation, and the signaling pathway of the B-cell receptor. Furthermore, the frequencies of Tfh cells and its IL-21 level, and the IL-21R expressed by B-cell were all increased after BSF treatment. Additionally, in the co-culture system of CXCR5+ cells and HepG2.2.15 cells, HBsAg and HBeAg levels were decreased after BSF-containing serum treatment,as well as the up-regulating of Tfh cell frequencies and down-regulating of B-cell frequencies. CONCLUSIONS: BSF have the higher percentage of HBsAg decline and HBeAg seroclearance in Peg-IFN-α-treated patients compared with treatment-naive patients. The potential immunoregulatory mechanism may correlate with promoting the interaction between Tfh cells and B-cell through IL-21/IL-21R signaling pathway.


Asunto(s)
Subgrupos de Linfocitos B , Medicamentos Herbarios Chinos , Hepatitis B Crónica , Humanos , Ratas , Animales , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Células T Auxiliares Foliculares , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/diagnóstico , Antivirales/farmacología , Antivirales/uso terapéutico , Antígenos e de la Hepatitis B , Estudios Retrospectivos , Biomarcadores , ADN Viral , Resultado del Tratamiento , Polietilenglicoles/uso terapéutico
8.
Dev Comp Immunol ; 156: 105172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537730

RESUMEN

Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.


Asunto(s)
Proliferación Celular , Crassostrea , Hemocitos , Factores Reguladores del Interferón , Lipopolisacáridos , Animales , Hemocitos/metabolismo , Hemocitos/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Crassostrea/inmunología , Lipopolisacáridos/inmunología , Inmunidad Innata , Humanos , Granulocitos/inmunología , Granulocitos/metabolismo , Células HEK293
9.
Zool Res ; 45(2): 292-298, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485499

RESUMEN

Mutations in mitochondrial DNA (mtDNA) are maternally inherited and have the potential to cause severe disorders. Mitochondrial replacement therapies, including spindle, polar body, and pronuclear transfers, are promising strategies for preventing the hereditary transmission of mtDNA diseases. While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos, its application in non-human primates has not been previously reported. In this study, we successfully generated four healthy cynomolgus monkeys ( Macaca fascicularis) via female pronuclear transfer. These individuals all survived for more than two years and exhibited minimal mtDNA carryover (3.8%-6.7%), as well as relatively stable mtDNA heteroplasmy dynamics during development. The successful establishment of this non-human primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades de los Roedores , Ratones , Humanos , Femenino , Animales , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/prevención & control , Enfermedades Mitocondriales/veterinaria , Haplorrinos/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Primates/genética
10.
J Clin Transl Hepatol ; 12(3): 327-331, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38426190

RESUMEN

Hepatocyte nuclear factor 1ß (HNF1ß) is essential for biliary development, while its genetic defect triggers the dysplasia of interlobular bile ducts, leading to life-threatening hepatitis and cholestasis. To date, this disorder has mainly been documented in neonates. Here, we report a case of cholestasis in an adult patient caused by a de novo HNF1ß mutation. A liver biopsy revealed remarkable shrinkage of the portal area accompanied by a decrease or absence of interlobular bile ducts, veins, and arteries in the portal area. Our case showed that an HNF1ß defect could induce late-onset cholestasis with paucity of the portal area in adulthood.

11.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336518

RESUMEN

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Asunto(s)
Giro del Cíngulo , Nicotina , Humanos , Ratones , Animales , Nicotina/farmacología , Hiperalgesia/inducido químicamente , Dopamina/metabolismo , Dolor
12.
Phytomedicine ; 126: 155395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340578

RESUMEN

BACKGROUND: The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE: To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS: Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS: In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger ß-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating ß-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION: These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.


Asunto(s)
Bufanólidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , beta Catenina/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Carcinogénesis , Microambiente Tumoral
13.
ACS Omega ; 9(5): 5972-5984, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343959

RESUMEN

Pulpitis is a common dental emergency that presents with intense pain; there is still no specific medicine to treat pulpitis-induced pain to date. Herein, differentially expressed genes in mouse anterior cingulate cortex (ACC) were investigated 7 days after pulp exposure via a combination of high-throughput transcriptomic and proteomic analyses. We screened 34 key genes associated with 8 critical pathways. Among these, genes (Elovl5, Ikbke, and Nbeal2) involved in immune or inflammatory responses exhibited exclusive regulation at the transcriptomic level, as confirmed by qRT-PCR. We also investigated the comprehensive expression profiles of genes (Erg1, Shank2, Bche, Serinf1, and Pax6) related to synaptic plasticity. Furthermore, the underlying mechanisms for pulpitis-induced pain through immune or inflammatory responses and synaptic plasticity were discussed. Taken together, our findings shed light on the mechanisms underlying pulpitis-induced pain, deepening our understanding of the molecular pathways and providing potential therapeutic and diagnostic targets.

14.
Asian J Androl ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319194

RESUMEN

Ex vivo tissue culture of the human corpus cavernosum (CC) can be used to explore the tissue structural changes and complex signaling networks. At present, artificial CC-like tissues based on acellular or three-dimensional (3D)-printed scaffolds are used to solve the scarcity of primary penis tissue samples. However, inconvenience and high costs limit the wide application of such methods. Here, we describe a simple, fast, and economical method of constructing artificial CC-like tissue. Human CC fibroblasts (FBs), endothelial cells (ECs), and smooth muscle cells (SMCs) were expanded in vitro and mixed with Matrigel in specific proportions. A large number of bubbles were formed in the mixture by vortexing combined with pipette blowing, creating a porous, spongy, and spatial structure. The CC FBs produced a variety of signaling factors, showed multidirectional differentiation potential, and grew in a 3D grid in Matrigel, which is necessary for CC-like tissue to maintain a porous structure as a cell scaffold. Within the CC-like tissue, ECs covered the surface of the lumen, and SMCs were located inside the trabeculae, similar to the structure of the primary CC. Various cell components remained stable for 3 days in vitro, but the EC content decreased on the 7th day. Wingless/integrated (WNT) signaling activation led to lumen atrophy and increased tissue fibrosis in CC-like tissue, inducing the same changes in characteristics as in the primary CC. This study describes a preparation method for human artificial CC-like tissue that may provide an improved experimental platform for exploring the function and structure of the CC and conducting drug screening for erectile dysfunction therapy.

15.
Dev Cell ; 59(4): 517-528.e3, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38272028

RESUMEN

Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation and glutathione (GSH) depletion. Despite recent advances, challenges remain in understanding the bidirectional interactions or interplay between organelles during ferroptosis. In this study, we aimed to understand the interplay between mitochondria (Mito) and lysosomes (Lyso) in cell homeostasis and ferroptosis. For this purpose, we designed a single fluorescent probe that marks GSH in Mito and hypochlorous acid (HOCl) in Lyso with two distinct emissions. Using this dual-targeted single fluorescent probe (9-morphorino pyronine), we detected Mito-Lyso interplay in ferroptosis. We disclosed differences in Mito-Lyso interplay depending on the induction of ferroptosis. Although erastin treatment decreased GSH, RSL3 triggered a HOCl burst, and FIN56- and FINO2-induced ferroptosis increased GSH and HOCl. Additionally, we showed that only extracellular vesicles generated during erastin-induced ferroptosis could spontaneously move and dock to neighboring cells, resulting in accelerated cell death.


Asunto(s)
Vesículas Extracelulares , Ferroptosis , Colorantes Fluorescentes/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Vesículas Extracelulares/metabolismo
16.
J Control Release ; 367: 500-514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278367

RESUMEN

Hepatocellular carcinoma (HCC), the most commonly diagnosed primary liver cancer, has become a leading cause of cancer-related death worldwide. Accumulating evidence confirms that the stromal constituents within the tumor microenvironment (TME) exacerbate HCC malignancy and set the barriers to current anti-HCC treatments. Recent developments of nano drug delivery system (NDDS) have facilitated the application of stroma-targeting therapeutics, disrupting the stromal TME in HCC. This review discusses the stromal activities in HCC development and therapy resistance. In addition, it addresses the delivery challenges of NDDS for stroma-targeting therapeutics (termed anti-stromal nanotherapeutics in this review), and provides recent advances in anti-stromal nanotherapeutics for safe, effective, and specific HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Microambiente Tumoral
17.
Drug Discov Today ; 29(3): 103892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272174

RESUMEN

Chemotherapeutic drugs to activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway have been exploited for tumor chemoimmunotherapy. The clinical translation of chemotherapeutic cGAS-STING activators is hindered by the lack of safe, efficient, and specific delivery strategies. Nanodrug delivery systems (NDDS) designed for reducing toxic effects and improving transport effectiveness potentiate in vivo delivery of chemotherapeutic cGAS-STING activators. cGAS-STING monotherapy often encounters tumor resistance without providing satisfactory therapeutic benefit; therefore combination therapy is desirable. This review describes NDDS strategies for surmounting delivery obstacles of chemotherapeutic cGAS-STING activators and highlights combinatorial regimens, which utilize therapeutics that work by different mechanisms, for optimal therapy.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Terapia Combinada , Nucleotidiltransferasas
18.
Cancer Res ; 84(2): 192-210, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225927

RESUMEN

Stromal cells are physiologically essential components of the tumor microenvironment (TME) that mediates tumor development and therapeutic resistance. Development of a logical and unified system for stromal cell type identification and characterization of corresponding functional properties could help design antitumor strategies that target stromal cells. Here, we performed a pan-cancer analysis of 214,972 nonimmune stromal cells using single-cell RNA sequencing from 258 patients across 16 cancer types and analyzed spatial transcriptomics from 16 patients across seven cancer types, including six patients receiving anti-PD-1 treatment. This analysis uncovered distinct features of 39 stromal subsets across cancer types, including various functional modules, spatial locations, and clinical and therapeutic relevance. Tumor-associated PGF+ endothelial tip cells with elevated epithelial-mesenchymal transition features were enriched in immune-depleted TME and associated with poor prognosis. Fibrogenic and vascular pericytes (PC) derived from FABP4+ progenitors were two distinct tumor-associated PC subpopulations that strongly interacted with PGF+ tips, resulting in excess extracellular matrix (ECM) abundance and dysfunctional vasculature. Importantly, ECM-related cancer-associated fibroblasts enriched at the tumor boundary acted as a barrier to exclude immune cells, interacted with malignant cells to promote tumor progression, and regulated exhausted CD8+ T cells via immune checkpoint ligand-receptors (e.g., LGALS9/TIM-3) to promote immune escape. In addition, an interactive web-based tool (http://www.scpanstroma.yelab.site/) was developed for accessing, visualizing, and analyzing stromal data. Taken together, this study provides a systematic view of the highly heterogeneous stromal populations across cancer types and suggests future avenues for designing therapies to overcome the tumor-promoting functions of stromal cells. SIGNIFICANCE: Comprehensive characterization of tumor-associated nonimmune stromal cells provides a robust resource for dissecting tumor microenvironment complexity and guiding stroma-targeted therapy development across multiple human cancer types.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/genética , Neoplasias/terapia , Perfilación de la Expresión Génica , Linfocitos T CD8-positivos
19.
J Phys Condens Matter ; 36(13)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38091623

RESUMEN

With the discovery of two-dimensional (2D) ferroelectric materials such as CuInP2S6andα-In2Se3, the ferroelectric field effect transistors (Fe-FETs) based on these materials have entered a rapid-development period. The metal/semiconductor contact is an unavoidable topic in the construction of devices. In this paper, heterostructuresα-In2Se3/metals (Pd, Pt, Cu, Ag and Au) are discussed. According to different stacking types, the structures and energy of 160 heterostructures are calculated and compared. Whenα-In2Se3contacts with the Pd, Pt and Cu, theα-In2Se3may transforms intoß-In2Se3. This phenomenon has hardly been mentioned or analyzed in previous reports. Contacting with the Au and Ag, theα-In2Se3maintains the original structure. The internal physical mechanism of phase transition is explained from the binding energy and the charge transfer. The paper provides sufficient theoretical support for research and development of the Fe-FETs based onα-In2Se3.

20.
Acad Radiol ; 31(3): 788-799, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932165

RESUMEN

RATIONALE AND OBJECTIVES: The detection of axillary lymph node metastasis (ALNM) in patients with breast cancer is a crucial determinant in the decision-making process for axillary surgery and potential therapies. The objective of this study was to develop and validate a radiomics nomogram that integrates radiomics features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with clinical factors to predict ALNM in patients with breast cancer. MATERIALS AND METHODS: A total of 177 patients with breast cancer were randomly divided into a training set (n = 123) and a validation set (n = 54) using a 7:3 ratio. From the DCE-MRI images, 2818 radiomics features were extracted from the primary tumor and axillary lymph node (ALN). Subsequently, optimal features were selected through the least absolute shrinkage and selection operator algorithm to construct the Radscore. Clinical factors were identified using univariate logistic regression analysis and included in a multivariate logistic regression analysis. Using the Radscore and clinical factors, a radiomics nomogram was developed using the Support Vector Machine method. The predicting efficacy of our model was visually appraised utilizing a receiver operator characteristic (ROC) curve, while its clinical application and predictive accuracy were assessed through decision curve analysis (DCA) and calibration curves, respectively. RESULTS: The results revealed Ki67, multifocality, and MRI-reported ALN status as independent risk factors for ALNM. The radiomics nomogram demonstrated good calibration and discrimination with areas under the ROC curve of 0.92 (95% confidence interval [CI], 0.88-0.97) in the training set and 0.90 (95% CI, 0.72-0.90) in the validation set. DCA revealed the clinical usefulness of the radiomics nomogram. CONCLUSION: The DCE-MRI-based radiomics nomogram is a reliable tool for assessing ALNM in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , Radiómica , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Ganglios Linfáticos/diagnóstico por imagen , Metástasis Linfática/diagnóstico por imagen , Nomogramas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA