RESUMEN
Biodiversity loss is caused by intensive human activities and threatens human well-being. However, less is known about how the combined effects of multiple stressors on the diversity of internal (alpha diversity) and multidimensional (beta diversity) communities. Here, we conducted a long-term experiment to quantify the contribution of environmental stressors (including water quality, land use, climate factors, and hydrological regimes) to macroinvertebrate communities alpha and beta diversity in the mainstream of the Songhua River, the third largest river in China, from 2012 to 2019. Our results demonstrated that the alpha and beta diversity indices showed a decline during the study period, with the dissimilarity in community composition between sites decreasing significantly, especially in the impacted river sections (upper and midstream). Despite overall improvement in water quality after management intervention, multiple human-caused stressors still have led to biotic homogenization of macroinvertebrate communities in terms of both taxonomic and functional diversities in the past decade. Our study revealed the increased human land use explained an important portion of the variation of diversities, further indirectly promoting biotic homogenization by changing the physical and chemical factors of water quality, ultimately altering assemblage ecological processes. Furthermore, the facets of diversity have distinct response mechanisms to stressors, providing complementary information from the perspective of taxonomy and function to better reflect the ecological changes of communities. Environmental filtering determined taxonomic beta diversity, and functional beta diversity was driven by the joint efforts of stressors and spatial processes. Finally, we proposed that traditional water quality monitoring alone cannot fully reveal the status of river ecological environment protection, and more importantly, we should explore the continuous changes in biodiversity over the long term. Meanwhile, our results also highlight timely control of nutrient input and unreasonable expansion of land use can better curb the ecological degradation of rivers and promote the healthy and sustainable development of floodplain ecosystems.
Asunto(s)
Ecosistema , Invertebrados , Animales , Humanos , Invertebrados/fisiología , Efectos Antropogénicos , Monitoreo del Ambiente/métodos , Biodiversidad , ChinaRESUMEN
Periphytic algae are often used as an indicator to evaluate water quality. Here, the community structure of periphytic algae and its relationship with environment factors were analyzed in the main stream of the Songhua River during the summers of 2014 to 2019. The status and trends in ecological water quality were also evaluated based on bioassessments. Phytoplankton species belonging to 4 phyla and 58 genera were recorded, including 28 Bacillariophyta genera, 17 Chlorophyta genera, 10 Cyanophyta genera, and 3 Euglenophyta genera; Bacillariophyta, Chlorophyta, and Cyanophyta accounted for 48.28%, 29.31%, and 17.24% of the community, respectively. Cell densities varied between 1.29×104 and 8.42×104 ind·cm-3, with an average of 4.35×104 ind·cm-3. The dominant genera were Cyclotella, Melosira, Asterionella, Cymbella, Synedra, Pinnularia, Navicula, and Scenedesmus. The physicochemical water quality showed notable changes during the past six-year monitoring period. Specifically, the dissolved oxygen content increased year on year; ammonia nitrogen, total phosphorus, and total nitrogen first increased and then decreased; and, overall, water quality significantly improved in 2019. Relationship between periphytic algae and environmental factors was further examined using redundancy analysis (RDA), which showed that time was the main factor driving the succession of algal community structure. Dissolved oxygen (DO), ammonia nitrogen (NH4+-N), total nitrogen (TN), total phosphorus (TP), five-day biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were also important environmental variables affecting algal community structure.