Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(36): e2409346121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190345

RESUMEN

Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Complejo Sinaptonémico , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Meiosis , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Masculino , Intercambio Genético
2.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071430

RESUMEN

Previous studies of hematopoietic stem cells (HSCs) primarily focused on single cell-based niche models, yielding fruitful but conflicting findings 1-5 . Here we report our investigation on the fetal liver (FL) as the primary fetal hematopoietic site using spatial transcriptomics. Our study reveals two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche. The PV niche, composing N-cadherin (N-cad) Hi Pdgfrα + mesenchymal stromal cells (MSCs), endothelial cells (ECs), and N-cad Lo Albumin + hepatoblasts, maintains quiescent and multipotential FL-HSCs. Conversely, the sinusoidal niche, comprising ECs, hepatoblasts and hepatocytes, as well as potential macrophages and megakaryocytes, supports proliferative FL-HSCs biased towards myeloid lineages. Unlike prior reports on the role of Cxcl12, with its depletion from vessel-associated stromal cells leading to 80% of HSCs' reduction in the adult bone marrow (BM) 6,7 , depletion of Cxcl12 via Cdh2 CreERT (encoding N-cad) induces altered localization of HSCs from the PV to the sinusoidal niches, resulting in an increase of HSC number but with myeloid-bias. Similarly, we discovered that adult BM encompasses two niches within different zones, each composed of multi-cellular components: trabecular bone area (TBA, or metaphysis) supporting deep-quiescent HSCs, and central marrow (CM, or diaphysis) fostering heterogenous proliferative HSCs. This study transforms our understanding of niches by shifting from single cell-based to multicellular components within distinct zones, illuminating the intricate regulation of HSCs tailored to their different cycling states.

3.
Elife ; 132024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873887

RESUMEN

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.


Asunto(s)
Transición Epitelial-Mesenquimal , Cresta Neural , Cresta Neural/citología , Animales , Ratones , Análisis de la Célula Individual
4.
Curr Biol ; 34(2): 352-360.e4, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38176417

RESUMEN

Although Lepidopteran females build a synaptonemal complex (SC) in pachytene, homologs do not crossover, necessitating an alternative method of homolog conjunction. In Bombyx mori oocytes, the SC breaks down at the end of pachytene, and homolog associations are maintained by a large oocyte-specific structure, which we call the bivalent bridge (BB), connecting paired homologs. The BB is derived from at least some components of the SC lateral elements (LEs). It contains the HORMAD protein HOP1 and the LE protein SYCP2 and is formed by the fusion of the two LE derivatives. As diplotene progresses, the BB increases in width and acquires a layered structure with a thick band of HOP1 separating two layers of SYCP2. The HOP1 interacting protein, PCH2, joins the BB in mid-diplotene, and by late-diplotene, it lies in the middle of the HOP1 filament. This structure is maintained through metaphase I. SYCP2 and PCH2 are lost at anaphase I, and the BB no longer connects the separating homologs. However, a key component of the BB, HOP1, remains at the metaphase I plate. These changes in organization of the BB occur simultaneously with the movement of the kinetochore protein, DSN1, from within the BB at mid-diplotene to the edge of the homologs facing the poles by metaphase I. We view these data in context of models in which SC components and regulators can be repurposed to achieve different functions, a fascinating example of evolution achieving homolog conjunction in an alternative way with recycling of SC proteins.


Asunto(s)
Bombyx , Complejo Sinaptonémico , Animales , Femenino , Meiosis , Oocitos/metabolismo , Metafase
5.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37961316

RESUMEN

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation is a classic example of developmental EMT. An important feature of NCC development is their delamination from the neuroepithelium via EMT, following which NCC migrate throughout the embryo and undergo differentiation. NCC delamination shares similar changes in cellular state and structure with cancer cell invasion. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single cell RNA sequencing, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the progressive transcriptional and spatial transitions from premigratory to migratory cranial NCC during EMT and delamination. Of note gene expression and trajectory analysis indicate that distinct intermediate populations of NCC delaminate in either S phase or G2/M phase of the cell cycle, and the importance of cell cycle regulation in facilitating mammalian cranial NCC delamination was confirmed through cell cycle inhibition studies. Additionally, transcriptional knockdown revealed a functional role for the intermediate stage marker Dlc1 in regulating NCC delamination and migration. Overall, our work identifying and characterizing the intermediate cellular states, processes, and molecular signals that regulate mammalian NCC EMT and delamination furthers our understanding of developmental EMP and may provide new insights into mechanisms regulating pathological EMP.

6.
Nat Commun ; 14(1): 7947, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040722

RESUMEN

The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.


Asunto(s)
Centrómero , ADN Satélite , Humanos , ADN Satélite/genética , Proteína A Centromérica/genética , Centrómero/metabolismo , Mitosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Cromátides/metabolismo , Segregación Cromosómica
7.
Sci Adv ; 9(42): eadi1562, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862414

RESUMEN

In almost all sexually reproducing organisms, meiotic recombination and cell division require the synapsis of homologous chromosomes by a large proteinaceous structure, the synaptonemal complex (SC). While the SC's overall structure is highly conserved across eukaryotes, its constituent proteins diverge between phyla. Transverse filament protein, SYCP1, spans the width of the SC and undergoes amino-terminal head-to-head self-assembly in vitro through a motif that is unusually highly conserved across kingdoms of life. Here, we report creation of mouse mutants, Sycp1L102E and Sycp1L106E, that target SYCP1's head-to-head interface. L106E resulted in a complete loss of synapsis, while L102E had no apparent effect on synapsis, in agreement with their differential effects on the SYCP1 head-to-head interface in molecular dynamics simulations. In Sycp1L106E mice, homologs aligned and recruited low levels of mutant SYCP1 and other SC proteins, but the absence of synapsis led to failure of crossover formation and meiotic arrest. We conclude that SYCP1's conserved head-to-head interface is essential for meiotic chromosome synapsis in vivo.


Asunto(s)
Emparejamiento Cromosómico , Proteínas Nucleares , Animales , Ratones , Recombinación Homóloga , Meiosis/genética , Proteínas Nucleares/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(35): e2304168120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603749

RESUMEN

The niche has been shown to control stem cell self-renewal in different tissue types and organisms. Recently, a separate niche has been proposed to control stem cell progeny differentiation, called the differentiation niche. However, it remains poorly understood whether and how the differentiation niche directly signals to stem cell progeny to control their differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells contribute to two separate niche compartments for controlling both germline stem cell (GSC) self-renewal and progeny differentiation. In this study, we show that IGS cells express Inx2 protein, which forms gap junctions (GJs) with germline-specific Zpg protein to control stepwise GSC lineage development, including GSC self-renewal, germline cyst formation, meiotic double-strand DNA break formation, and oocyte specification. Germline-specific Zpg and IGS-specific Inx2 knockdowns cause similar defects in stepwise GSC development. Additionally, secondary messenger cAMP is transported from IGS cells to GSCs and their progeny via GJs to activate PKA signaling for controlling stepwise GSC development. Therefore, this study demonstrates that the niche directly controls GSC progeny differentiation via the GJ-cAMP-PKA signaling axis, which provides important insights into niche control of stem cell differentiation and highlights the importance of GJ-transported cAMP in tissue regeneration. This may represent a general strategy for the niche to control adult stem cell development in various tissue types and organisms since GJs and cAMP are widely distributed.


Asunto(s)
Células Madre Adultas , Femenino , Animales , Transporte Biológico , Diferenciación Celular , Autorrenovación de las Células , Drosophila , Uniones Comunicantes
9.
Proc Natl Acad Sci U S A ; 120(31): e2300475120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494397

RESUMEN

Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.


Asunto(s)
Proteínas Mitocondriales , Agregado de Proteínas , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas
10.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214893

RESUMEN

The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.

11.
Cell Rep Methods ; 2(4): 100201, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35497500

RESUMEN

We describe a cost-effective, highly sensitive, and quantitative method for in situ detection of RNA molecules in tissue sections. This method, dubbed Yn-situ, standing for Y-branched probe in situ hybridization, uses a single-strand DNA preamplifier with multiple initiation sites that trigger a hybridization chain reaction (HCR) to detect polynucleotides. By characterizing the performance of this method, we show that the Yn-situ method, in conjunction with an improved fixation step, is sensitive enough to allow detection of RNA molecules using fewer probes targeting short nucleotide sequences than existing methods. A set of five probes can produce quantitative results with smaller puncta and higher signal-to-noise ratio than the 20-probe sets commonly required for HCR and RNAscope. We show that the high sensitivity and wide dynamic range allow quantification of genes expressed at different levels in the olfactory sensory neurons. We describe key steps of this method to enable broad utility by individual laboratories.


Asunto(s)
ARN , ARN/genética , Hibridación in Situ , Relación Señal-Ruido , Secuencia de Bases
12.
Methods Mol Biol ; 2458: 359-375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35103978

RESUMEN

This protocol describes the fluorescence in situ hybridization (FISH) of DNA probes on mitotic chromosome spreads optimized for two super-resolution microscopy approaches-structured illumination microscopy (SIM) and stimulated emission depletion (STED). It is based on traditional DNA FISH methods that can be combined with immunofluorescence labeling (Immuno-FISH). This technique previously allowed us to visualize ribosomal DNA linkages between human acrocentric chromosomes and provided information about the activity status of linked rDNA loci. Compared to the conventional wide-field and confocal microscopy, the quality of SIM and STED data depends a lot more on the optimal specimen preparation, choice of fluorophores, and quality of the fluorescent labeling. This protocol highlights details that make specimens suitable for super-resolution microscopy and tips for good imaging practices.


Asunto(s)
Cromosomas , Colorantes Fluorescentes , Hibridación Fluorescente in Situ/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos
13.
Cell ; 185(2): 361-378.e25, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34982960

RESUMEN

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.


Asunto(s)
Adaptación Fisiológica , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fluorescencia , Simulación del Acoplamiento Molecular , Membrana Nuclear/metabolismo , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Dominios Proteicos , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell Rep ; 36(10): 109674, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496236

RESUMEN

Tumor-initiating stem cells (TSCs) are critical for drug resistance and immune escape. However, the mutual regulations between TSC and tumor microenvironment (TME) remain unclear. Using DNA-label retaining, single-cell RNA sequencing (scRNA-seq), and other approaches, we investigated intestinal adenoma in response to chemoradiotherapy (CRT), thus identifying therapy-resistant TSCs (TrTSCs). We find bidirectional crosstalk between TSCs and TME using CellPhoneDB analysis. An intriguing finding is that TSCs shape TME into a landscape that favors TSCs for immunosuppression and propagation. Using adenoma-organoid co-cultures, niche-cell depletion, and lineaging tracing, we characterize a functional role of cyclooxygenase-2 (Cox-2)-dependent signaling, predominantly occurring between tumor-associated monocytes and macrophages (TAMMs) and TrTSCs. We show that TAMMs promote TrTSC proliferation through prostaglandin E2 (PGE2)-PTGER4(EP4) signaling, which enhances ß-catenin activity via AKT phosphorylation. Thus, our study shows that the bidirectional crosstalk between TrTSC and TME results in a pro-tumorigenic and immunosuppressive contexture.


Asunto(s)
Carcinogénesis/patología , Forma de la Célula/fisiología , Células Madre Neoplásicas/patología , Microambiente Tumoral/fisiología , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Humanos , Intestinos/metabolismo , Ratones , Organoides/metabolismo
15.
Mol Biol Cell ; 32(16): 1487-1500, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34133218

RESUMEN

Proper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB-yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy, we show that the conserved Sad1-UNC-84 homology-domain protein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for localized NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for redistribution of other SPB ring proteins and for complete NEBD at the SPB to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate partial NEBD and spindle formation through building of a SPB ring structure.


Asunto(s)
Centrómero/metabolismo , Centrosoma/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Huso Acromático/metabolismo , Cuerpos Polares del Huso/metabolismo
16.
Cell Rep ; 34(2): 108603, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440163

RESUMEN

Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.


Asunto(s)
Cuerpo Ciliar/metabolismo , Nectinas/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos , Transducción de Señal
17.
PLoS Genet ; 16(12): e1008911, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332348

RESUMEN

Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids 'rescues' SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes.


Asunto(s)
Centrómero/genética , Cromosomas Fúngicos/genética , Diploidia , Dosificación de Gen , Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Saccharomyces cerevisiae , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/metabolismo
18.
Front Cell Dev Biol ; 8: 594092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195270

RESUMEN

The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.

19.
Elife ; 92020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32851976

RESUMEN

Asymmetric astral microtubule organization drives the polarized orientation of the S. cerevisiae mitotic spindle and primes the invariant inheritance of the old spindle pole body (SPB, the yeast centrosome) by the bud. This model has anticipated analogous centrosome asymmetries featured in self-renewing stem cell divisions. We previously implicated Spc72, the cytoplasmic receptor for the gamma-tubulin nucleation complex, as the most upstream determinant linking SPB age, functional asymmetry and fate. Here we used structured illumination microscopy and biochemical analysis to explore the asymmetric landscape of nucleation sites inherently built into the spindle pathway and under the control of cyclin-dependent kinase (CDK). We show that CDK enforces Spc72 asymmetric docking by phosphorylating Nud1/centriolin. Furthermore, CDK-imposed order in the construction of the new SPB promotes the correct balance of nucleation sites between the nuclear and cytoplasmic faces of the SPB. Together these contributions by CDK inherently link correct SPB morphogenesis, age and fate.


Asunto(s)
Centrosoma/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Ciclo Celular/genética , Ciclo Celular/fisiología , Centrosoma/química , Quinasas Ciclina-Dependientes/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/metabolismo
20.
Bio Protoc ; 10(4): e3524, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654748

RESUMEN

Numerous experimental approaches exist to study interactions between two subunits of a large macromolecular complex. However, most methods do not provide spatial and temporal information about binding, which are critical for dissecting the mechanism of assembly of nanosized complexes in vivo. While recent advances in super-resolution microscopy techniques have provided insights into biological structures beyond the diffraction limit, most require extensive expertise and/or special sample preparation, and it is a challenge to extend beyond binary, two color experiments. Using HyVolution, a super-resolution technique that combines confocal microscopy at sub-airy unit pinhole sizes with computational deconvolution, we achieved 140 nm resolution in both live and fixed samples with three colors, including two fluorescent proteins (mTurquoise2 and GFP) with significant spectral overlap that were distinguished by means of shifting the excitation wavelength away from common wavelengths. By combining HyVolution super-resolution fluorescence microscopy with bimolecular fluorescence complementation (SRM-BiFC), we describe a new assay capable of visualizing protein-protein interactions in vivo at sub-diffraction resolution. This method was used to improve our understanding of the ordered assembly of the Saccharomyces cerevisiae spindle pole body (SPB), a ~1 giga-Dalton heteromeric protein complex formed from 18 structural components present in multiple copies. We propose that SRM-BiFC is a powerful tool for examination of direct interactions between protein complex subunits at sub-diffraction resolution in live cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...