Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 4): 135006, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181363

RESUMEN

Temperature-responsive materials with excellent reliability, sensitivity, and flame-retardant properties have always been an urgent need in the field of intelligent fire protection. In this discourse, we introduce a novel thermosensitive ionic hydrogel coating (gelatin/poly(acrylamide-co-acrylic acid)/CaCl2/spindle-shaped aluminum hydroxide nanosheet/glycerol, HCA) synthesized via free radical polymerization. HCA not only demonstrates considerable mechanical properties with a fracture strain of up to 842.5 % and a maximum tensile strength of 0.77 MPa but also exhibits notable flame retardancy and adhesion. It effectively covers combustible surfaces, providing outstanding fire protection. Notably, HCA boasts a Seebeck coefficient of up to 10.1 mV/K, significantly surpassing conventional thermoelectric materials. The well-established linear relationship between the generated voltage and temperature variation enables HCA-based intelligent fire-alarm system to accurately emit continuous alerts during fire incidents and swiftly transmit alarm signals to terminal devices. The development of this intelligent fire-alarm system presents new avenues in intelligent fire-safety technologies.


Asunto(s)
Incendios , Retardadores de Llama , Gelatina , Hidrogeles , Gelatina/química , Hidrogeles/química , Incendios/prevención & control , Temperatura , Resistencia a la Tracción
2.
J Colloid Interface Sci ; 658: 219-229, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104404

RESUMEN

The fabrics commonly used in architectural decorative materials pose significant fire hazards due to their flammability and rapid fire spread. Moreover, the traditional fire-alarm systems may fail to function properly in complex fire environments owing to power supply disruptions. In this study, we developed a low-cost and eco-friendly flame-retardant conductive fabric-based triboelectric nanogenerator (FCF-TENG) by integrating flame-retardant conductive nylon fabric and polytetrafluoroethylene soaked cotton fabric. This nanogenerator exhibits excellent flame-retardant properties and remarkable energy-harvesting capabilities. The nylon fabric, treated with layer-by-layer self-assembly method, possesses outstanding self-extinguishing capability and melt-dripping resistance. Additionally, the electrical performance of FCF-TENG significantly improves, with a 10-fold boost in conductivity, and the open-circuit voltage increases by 84% to 92 V. Besides, by incorporating the rectifier circuit, the FCF-TENG is capable of completely charging a 1 µF capacitor within 30 s. Furthermore, the FCF-TENG was successfully applied as a self-powered sensor in the fire-alarm system and served as a safety exit indicator for evacuees and fire rescue. This work presents an effective and innovative application of multifunctional smart textiles for energy harvesting and self-powered sensing.

3.
Materials (Basel) ; 16(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38138744

RESUMEN

A self-built gas explosion testing platform was used to explore the quenching effect of flame-retardant polyurethane foam on a gas explosion. The effect of the foam's filling position and length on the explosion suppression performance was explored. The results demonstrate that polyurethane foam exhibits an excellent flame-quenching performance, with a minimum of a 5 cm length of porous material being sufficient to completely quench the flame during propagation. Furthermore, the attenuation function of this porous material on the pressure wave is insignificantly affected by the change in ignition energy. Compared with the explosive state of the empty pipeline, the best suppression effect is obtained when the polyurethane foam is 20 cm in length with a filling position at 1.8 m, and the maximum explosion pressure and maximum rise rate are attenuated by 86.2% and 84.7%, respectively. This work has practical significance for the application of porous materials in explosion suppression and explosion-proof technologies in the chemical industrial processing and oil (gas) storage fields.

4.
Polymers (Basel) ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447485

RESUMEN

Epoxy vitrimers appear as a promising alternative to common epoxy thermoset composites. Nevertheless, the possibilities of applying these materials are limited due to their high flammability which may cause high fire risks. To date, the flame-retardant epoxy vitrimer systems reported in the literature almost all rely on intrinsic flame retardancy to achieve high fire safety; however, the complex and expensive synthesis process hinders their large-scale application. In this work, disulfide-based epoxy vitrimer (EPV) was fabricated with 4, 4'-dithiodianiline as the curing agent, and microencapsulated ammonium polyphosphate (MFAPP) was employed as a potential additive flame retardant to improve their fire retardancy. As a comparative study, common epoxy (EP) composites were also prepared using 4,4'-diaminodiphenylmethane as the curing agent. The results showed that the introduction of dynamic disulfide bonds led to a reduction in the initial thermal decomposition temperature of EPV by around 70 °C compared to EP. Moreover, the addition of 7.5 wt.% of MFAPP endowed EP with excellent fire performance: the LOI value was as high as 29.9% and the V-0 rating was achieved in the UL-94 test (3.2 mm). However, under the same loading, although EPV/MFAPP7.5% showed obvious anti-dripping performance, it did not reach any rating in the UL-94 test. The flame-retardant mechanisms in the condensed phase were evaluated using SEM-EDS, XPS, and Raman spectroscopy. The results showed that the residue of EPV/MFAPP7.5% presented numerous holes during burning, which failed to form a continuous and dense char layer as a physical barrier resulting in relatively poor flame retardancy compared to EP/MFAPP7.5%.

5.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365572

RESUMEN

Increasing contamination risk from oil/organic liquid leakage creates strong demand for the development of absorbents with excellent hydrophobicity and absorption capacity. Herein, bagasse was carbonized to form porous char with a special structure of array-style and vertically perforated channels, and then the activation process enlarged the pore volume of the char. With the cooperation of low-surface-energy polydimethylsiloxane and diatomaceous earth particles, the modified activated carbon aerogel (MACA) was fabricated by modifying the surface coating and mastoid structure on the bagasse char. Moreover, the MACA demonstrates high porosity oil-water separation, hydrophobicity, and considerable absorption capacity (4.06-12.31 g/g) for gasoline and various organic solvents. This work converts agricultural waste into an efficient porous adsorbent, offering a scalable and commercially feasible solution to solving the leakages of oil/organic solvents.

6.
Carbohydr Polym ; 277: 118884, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893287

RESUMEN

Transparent chitosan (CS) film is prepared and its application in high temperature/fire warning is discussed. NaCl-doped chitosan (CS-NaCl) film shows excellent performance in real-time temperature monitoring and fire warning. The temperature warning of CS-NaCl film can be triggered under approximately 50 °C, and it has a good repeatable warning performance under high-temperature conditions. The CS composite film exhibits an ultra-sensitive (0.4 s) warning under fire attacking. A possible electrical conduction and fire-alarm mechanisms are proposed. The addition of NaCl increases the number of charge carriers, which improves the ionic conductivity of the composite film. This study provides a possibility for the application of CS in the field of fire warning.

7.
J Hazard Mater ; 403: 123645, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32853891

RESUMEN

Boric acid-modified graphene oxide (GO-BA) paper is prepared by a green and facile water evaporation-induced self-assembly method, and its application as an early fire-alarm sensor is investigated. The nacre structure is constructed by assembling graphene oxide (GO) and boric acid (BA) as brick and mortar, respectively. Compared with pure GO paper, improved thermal-oxidative stability is obtained for GO-BA. GO nanosheets are bonded with BA molecules by forming hydrogen bonds between hydroxyl in BA and the rich oxygen-containing functional groups on GO. Notably, the insulating GO-BA paper can be rapidly thermally reduced to conductive reduced graphene oxide under flame exposure, thus providing an ideal fire-alarm response with a quick flame-detection time of ∼0.8 s. In addition, boron oxide formed under flame attack covers the surface of GO, inhibiting further oxidation of GO paper, and effectively extending the duration time of GO-BA under combustion. These results indicate that the GO-BA paper prepared has a broad prospect in the field of fire early-alarm.

8.
J Colloid Interface Sci ; 582(Pt A): 90-101, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814226

RESUMEN

Activated carbons (AC) were prepared by carbonization and KOH activation using rice husk as feedstock. The effects of impregnation ratios and activation temperatures on the properties of AC were investigated. Under optimum conditions, BET surface area, total pore volume and micropore volume of AC are as high as 1495.52 m2/g, 0.786 cm3/g and 0.447 cm3/g, respectively. Surface modification with chitosan as nitrogen source was performed simultaneously during KOH activation process. XPS and FT-IR analyses show that N-species was successfully incorporate into AC. Compared with AC-5 (general AC), CAC-5 (modified AC) exhibits better CO2 adsorption performance, reaching 5.83 mmol/g at 273 K and 1 bar, which can be attributed to the formation of the CO2-philic active sites on AC surface by N-species. The linear correlations between CO2 uptake, micropore volume within specific size section and N-content was investigated. The isosteric heat of CO2 adsorption for CAC-5 (average 30.21 kJ/mol) is much higher than that of AC-5 (average 14.48 kJ/mol). The adsorption behavior of CAC-5 can be well described by Freundlich model. The high IAST selectivity factor for N-doped ACs indicates their excellent adsorption selectivity for CO2 over N2. Both physisorption and chemisorption are present in CO2 adsorption process of N-doped ACs.


Asunto(s)
Carbón Orgánico , Oryza , Adsorción , Dióxido de Carbono , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Hazard Mater ; 403: 123653, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32827861

RESUMEN

In this investigation, ammonium polyphosphate (APP) is applied to suppress the deflagration of sucrose dust. Through the systematic research on flame propagation images and temperature, decomposition behavior of powder samples and the compositions of deflagration residue, the suppression performance and mechanism of APP on sucrose deflagration are profoundly summarized. Timing diagrams show that APP contributes to reduce deflagration flame brightness, increases ignition delay time and flame fault area. The minimum inerting concentration of APP for sucrose deflagration is determined to be 8 %. From the collected deflagration flame temperature curves, it is confirmed that APP can delay peak temperature arrival time, weaken temperature fluctuation, and decrease peak values of flame temperature and temperature rising rate. Through the analysis on thermal decomposition of samples and deflagration residue, it is reflected that APP has superior composite suppression effect. It can not only absorb reaction heat, but also decrease deflagration exotherm to improve thermal stability of sucrose particles. Thus, the easily oxidized components in sucrose are protected, and deflagration intensity is effectively weakened. This work provides a new solution for prevention and suppression deflagration of dust waste in sugar industry.

10.
J Colloid Interface Sci ; 578: 412-421, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535423

RESUMEN

A novel nacre-like flame-retardant paper based on graphene oxide (GO), and phytic acid (PTA) is fabricated via evaporation-induced self-assembly. This facile method is time saving and low energy consuming. A facile approach is proposed to improve thermal oxidative stability of GO paper by in situ phosphorus doping during flame exposure. Then fire-alarm system is designed based on the high-temperature thermal reduction characteristic of GO. The GO paper functionalized with PTA (GO-PTA) can provide ultrasensitive, reliable and longtime fire early-warning signal. Fire alarm can be triggered at approximately 0.50 s when GO-PTA samples are attacked by fire. Phosphorus atoms are in situ doped into graphene layers during fire exposure, endowing GO-PTA paper with outstanding thermal oxidative stability, and thus alarm duration time of GO is greatly improved. The work develops advanced fire detection and early-warning sensors that provide reliable and continuous signals, which provide more available time for fire evacuation.

11.
J Hazard Mater ; 394: 122584, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299041

RESUMEN

Flame propagation characteristics of wood dust deflagration and suppression mechanism of ultrafine powders are investigated systematically. The deflagration reaction intensity of wood dust increases firstly and then decreases with the increase in dust cloud concentration. This is due to factors such as oxygen supply, positive feedback among flame characteristic parameters. Thus, there is an equivalent dust concentration for greatest deflagration intensity. Nano-sized ultrafine zirconium hydroxide (Zr(OH)4) and silicon dioxide (SiO2) powder are introduced to suppress wood dust deflagration at the equivalent concentration. It is found that Zr(OH)4 has a suppression effect of endothermic decomposition to generate zirconia (ZrO2), dilution of oxygen and absorption of free radicals; while SiO2 exerts suppression effect due to its high melting point and heat absorption. The suppression performance of Zr(OH)4 is better than that of SiO2. This is because that Zr(OH)4 and ZrO2 have a catalytic carbonization effect. It can not only improve thermal stability of wood particles by catalyzing production of high-temperature resistant residuals, but also promote the formation of catalytic sites to reduce crystallite size of carbon layer on wood particles surface, weakening heat and mass transfer between particles.

12.
J Hazard Mater ; 378: 120723, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31216501

RESUMEN

The suppression effects of ultrafine Mg (OH)2 powders with different particle sizes and mass fractions on explosion flame of wood dust are experimentally studied in a half-closed vertical experimental duct. Flame structures and characteristic parameters, including flame light emission images, propagation velocity, temperature, during the flame propagation of wood dust explosion are recorded by high-speed photography and fine thermocouple. Thermal decomposition behaviors of wood dust and Mg(OH)2 powders are studied using synchronous thermal analyzer. Chemical structures of residual dust samples after the explosion are characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The experimental results show that explosion flame of wood dust is obviously suppressed by physical and chemical effects of Mg(OH)2 powders, and the suppression effect of nano-Mg(OH)2 is better than that of micron-Mg(OH)2 under same mass fractions. By analyzing multiple characteristics of nano-powders, the advantages of nano-Mg(OH)2 over micron-powders are further investigated.

13.
J Colloid Interface Sci ; 553: 364-371, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220710

RESUMEN

Melamine-phytate (MEL-PA) nanoflakes are formed by supramolecular self-assembly technology using melamine (MEL) and bio-based phytic acid (PA) as the building blocks. This work explores the possibility of this two-dimensional nanomaterial as flame retardant. The layered MEL-PA with the loading of 1, 2 and 3 wt% are incorporated into polypropylene (PP) matrix. MEL-PA is dispersed well in the PP matrix. Thermal stability and flame retardant performance of PP/MEL-PA composites are investigated. Compared with neat PP, the addition of 2 wt% MEL-PA decreases the peak heat release rate from 756 to 608 kW/m2. Char yield of PP is improved by MEL-PA, and the chemical structure and graphitization degree of residual char are studied to reveal flame retardant mechanism.

14.
J Colloid Interface Sci ; 539: 609-618, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30612024

RESUMEN

To overcome the shortcomings of inefficiency in the preparation of covalent organic frameworks (COFs) nanosheets by ball milling, a gram-scale method to preparing COFs nanosheets with butyl lithium as the intercalation agent has been proposed. A significant advantage of COFs nanosheets that display good interface compatibility has been discovered through experiments. Due to their special organic crystalline structure and hydrogen bonding effects, COFs nanosheets without any modification show good interface compatibility, good dispersibility and enhancement in the mechanical properties of PVA matrix even at the loading as high as 9.6 wt%. Meanwhile, thermal, hydrophobic and flame retardant performances of PVA/COFs nanosheets nanocomposite have also been strengthened. This work should provide a guidance for the preparation of multifunctional nanocomposites with high loading.

15.
J Hazard Mater ; 362: 294-302, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243252

RESUMEN

Hydrophobic silica aerogels were heat treated under various conditions. Physical and chemical analyses were conducted to study the effect of the heat treatments on the silica aerogels. The O/Si and C/Si values in the hydrophobic silica aerogels increased and decreased, respectively, with the increase in the heating temperature. C-O, -OH, and CO were detected during pyrolysis. Pyrolysis of the silica aerogels in air could be divided into 3 steps: the hydroxylation of methyl groups, the splitting of the alcoholic hydroxyl, and the oxidisation of CO. When the heat treatment temperature was lower than 350 °C, the properties of the silica aerogels showed little change. With further increase in the heat treatment temperature, the variation in the relevant parameters became more prominent. The secondary particles coalesced with one another, and the mesopores were destroyed. Consequently, the thermal conductivity and bulk density rose greatly. The carbon within the silica aerogels was released after heat treatment. As a result, the heat released in the thermal gravimetry and oxygen bomb analyses dropped remarkably with the increase in the heat treatment temperature.

16.
J Hazard Mater ; 352: 57-69, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29573730

RESUMEN

The suppression effect of graphene in the fire hazards and smoke toxicity of polymer composites has been seriously limited by both mass production and weak interfacial interaction. Though the electrochemical preparation provides an available approach for mass production, exfoliated graphene could not strongly bond with polar polymer chains. Herein, mussel-inspired functionalization of electrochemically exfoliated graphene was successfully processed and added into polar thermoplastic polyurethane matrix (TPU). As confirmed by SEM patterns of fracture surface, functionalized graphene possessing abundant hydroxyl could constitute a forceful chains interaction with TPU. By the incorporation of 2.0 wt % f-GNS, peak heat release rate (pHRR), total heat release (THR), specific extinction area (SEA), as well as smoke produce rate (SPR) of TPU composites were approximately decreased by 59.4%, 27.1%, 31.9%, and 26.7%, respectively. A probable mechanism of fire retardant was hypothesized: well-dispersed f-GNS constituted tortuous path and hindered the exchange process of degradation product with barrier function. Large quantities of degradation product gathered round f-GNS and reacted with flame retardant to produce the cross-linked and high-degree graphited residual char. The simple functionalization for electrochemically exfoliated graphene impels the application of graphene in the fields of flame retardant composites.

17.
ACS Appl Mater Interfaces ; 9(27): 23017-23026, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28636316

RESUMEN

Covalent organic frameworks (COFs) nanosheets prepared from condensation reaction between melamine and o-phthalaldehyde are first prepared through ball milling and then incorporated into thermoplastic polyurethanes (TPU) by solution mixing. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectrometer are applied to characterize COFs nanosheets. It is observed apparently from TEM image that COFs nanosheets are obtained. Successful preparation of COFs nanosheets is proved further by vanishment of typical diffraction peak of COFs at around 23.5° in COFs nanosheets XRD pattern, appearance of quadrant and semicircle stretching of the s-triazine ring at 1568 and 1469 cm-1 in FTIR spectra and N═C bond at 389.5 eV in N1s high-resolution XPS spectra of COFs nanosheets. The thermal property, combustion behavior and mechanical performance of TPU naoncomposites are also investigated. Incorporation of COFs nanosheets into TPU contributes to char forming of TPU under nitrogen atmosphere and 14.3% decrease of peak heat release rate of TPU. Besides, the elongation at break, Young's modulus, and fracture strength of TPU nanocomposites increase sharply compared with that of neat one.

18.
J Hazard Mater ; 337: 10-19, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28501639

RESUMEN

In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H2O, NH3, N2O, NO, NO2 and HNO3, while in nitrogen, H2O, NH3, NO and HNO3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization.

19.
ACS Appl Mater Interfaces ; 7(24): 13164-73, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26030779

RESUMEN

Herein, the molybdenum disulfide (MoS2) was simultaneously exfoliated and noncovalently functionalized by ultrasonication in a Pluronic aqueous solution and then was used to prepare the poly(ethylene oxide) (PEO) based nanocomposite films. The homogeneous dispersion of MoS2 and strong nanosheets/matrix interfacial adhesion were confirmed by representative electron microscopes. The considerable barrier action of the effective MoS2 nanosheets obviously restricted the ordering of crystal lamellae and the motion of polymer chains and then resulted in the formation of the devastated spherocrystal structure and morphological alterations in the nanocomposites, which were confirmed by polarized optical microscopy and the high value of the glass transition temperature. Importantly, MoS2 nanosheets hold great promise in reinforcing the thermal stability and mechanical property of polymer by increasing the effective volume of MoS2 nanosheets. A substantial reinforcement effect of PEO/MoS2 composite films was achieved: even at a relatively low loading level (0.9 wt %), 88.1% increase in Young's modulus, 72.7% increase in stress-at-failure, and 62.1 °C increment of the temperature corresponding to half weight loss were obtained. These significant reinforcements can be attributed to the gradient interface region, which could effectively transfer the stress from the weak polymer chains to the robust nanosheets, thus endowing the PEO/MoS2 composite films with excellent properties.

20.
J Nanosci Nanotechnol ; 12(3): 1776-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22754981

RESUMEN

Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...