Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 49, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378684

RESUMEN

BACKGROUND: Clinically, hormone replacement therapy (HRT) is the main treatment for primary ovarian insufficiency (POI). However, HRT may increase the risk of both breast cancer and cardiovascular disease. Exosomes derived from human umbilical cord mesenchymal stem cell (hUC-MSC) have been gradually applied to the therapy of a variety of diseases through inflammation inhibition, immune regulation, and tissue repair functions. However, the application and study of hUC-MSC exosomes in POI remain limited. METHODS: Here, we first constructed four rat animal models: the POI-C model (the "cyclophosphamide-induced" POI model via intraperitoneal injection), the POI-B model (the "busulfan-induced" POI model), the POI-U model (the "cyclophosphamide-induced" POI model under ultrasonic guidance), and MS model (the "maternal separation model"). Second, we compared the body weight, ovarian index, status, Rat Grimace Scale, complications, and mortality rate of different POI rat models. Finally, a transabdominal ultrasound-guided injection of hUC-MSC exosomes was performed, and its therapeuticy effects on the POI animal models were evaluated, including changes in hormone levels, oestrous cycles, ovarian apoptosis levels, and fertility. In addition, we performed RNA-seq to explore the possible mechanism of hUC-MSC exosomes function. RESULTS: Compared with the POI-C, POI-B, and MS animal models, the POI-U model showed less fluctuation in weight, a lower ovarian index, fewer complications, a lower mortality rate, and a higher model success rate. Second, we successfully identified hUC-MSCs and their exosomes, and performed ultrasound-guided intraovarian hUC-MSCs exosomes injection. Finally, we confirmed that the ultrasound-guided exosome injection (termed POI-e) effectively improved ovarian hormone levels, the oestrous cycle, ovarian function, and fertility. Mechanically, hUC-MSCs may play a therapeutic role by regulating ovarian immune and metabolic functions. CONCLUSIONS: In our study, we innovatively constructed an ultrasound-guided ovarian drug injection method to construct POI-U animal models and hUC-MSC exosomes injection. And we confirmed the therapeutic efficacy of hUC-MSC exosomes on the POI-U animal models. Our study will offer a better choice for new animal models of POI in the future and provides certain guidance for the hUC-MSCs exosome therapy in POI patients.


Asunto(s)
Exosomas , Insuficiencia Ovárica Primaria , Femenino , Ratas , Humanos , Animales , Insuficiencia Ovárica Primaria/diagnóstico por imagen , Insuficiencia Ovárica Primaria/terapia , Insuficiencia Ovárica Primaria/metabolismo , Privación Materna , Exosomas/metabolismo , Ciclofosfamida , Modelos Animales de Enfermedad , Ultrasonografía Intervencional , Hormonas/metabolismo , Cordón Umbilical
2.
Biomed Res Int ; 2022: 5119411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774278

RESUMEN

Background: Endometrial cancer greatly threatens the health of female. Emerging evidences have demonstrated that DNA methylation and immune infiltration are involved in the occurrence and development of endometrial cancer. However, the mechanism and prognostic biomarkers of endometrial cancer are still unclear. In this study, we assess DNA methylation and immune infiltration via bioinformatic analysis. Methods: The latest RNA-Seq, DNA methylation data, and clinical data related to endometrial cancer were downloaded from the UCSC Xena dataset. The methylation-driven genes were selected, and then the risk score was obtained using "MethylMix" and "corrplot" R packages. The connection between methylated genes and the expression of screened driven genes were explored using "survminer" and "beeswarm" packages, respectively. Finally, the role of VTCN1in immune infiltration was analyzed using "CIBERSORT" package. Results: In this study, 179 upregulated genes, and 311 downregulated genes were identified and found to be related to extracellular matrix organization, cell-cell junctions, and cell adhesion molecular binding. The methylation-driven gene VTCN1 was selected, and patients classified to the hypomethylation and high expression group displayed poor prognosis. The VTCN1 gene exhibited highest correlation coefficient between methylation and expression. More importantly, the hypomethylation of promoter of VTCN1 led to its high expression, thereby induce tumor development by inhibiting CD8+ T cell infiltration. Conclusions: Overall, our study was the first to reveal the mechanism of endometrial cancer by assessing DNA methylation and immune infiltration via integrated bioinformatic analysis. In addition, we found a pivotal prognostic biomarker for the disease. Our study provides potential targets for the diagnosis and prognosis of endometrial cancer in the future.


Asunto(s)
Metilación de ADN , Neoplasias Endometriales , Biología Computacional , Metilación de ADN/genética , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
3.
Front Oncol ; 11: 666199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150630

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the main causes of cancer-associated deaths globally, accounts for 90% of primary liver cancers. However, further studies are needed to confirm the metabolism-related gene signature related to the prognosis of patients with HCC. METHODS: Using the "limma" R package and univariate Cox analysis, combined with LASSO regression analysis, a metabolism-related gene signature was established. The relationship between the gene signature and overall survival (OS) of HCC patients was analyzed. RT-qPCR was used to evaluate the expression of metabolism-related genes in clinical samples. GSEA and ssGSEA algorithms were used to evaluate differences in metabolism and immune status, respectively. Simultaneously, data downloaded from ICGC were used as an external verification set. RESULTS: From a total of 1,382 metabolism-related genes, a novel six-gene signature (G6PD, AKR1B15, HMMR, CSPG5, ELOVL3, FABP6) was constructed based on data from TCGA. Patients were divided into two risk groups based on risk scores calculated for these six genes. Survival analysis showed a significant correlation between high-risk patients and poor prognosis. ROC analysis demonstrated that the gene signature had good predictive capability, and the mRNA expression levels of the six genes were upregulated in HCC tissues than those in adjacent normal liver tissues. Independent prognosis analysis confirmed that the risk score and tumor grade were independent risk factors for HCC. Furthermore, a nomogram of the risk score combined with tumor stage was constructed. The calibration graph results demonstrated that the OS probability predicted by the nomogram had almost no deviation from the actual OS probability, especially for 3-year OS. Both the C-index and DCA curve indicated that the nomogram provides higher reliability than the tumor stage and risk scores. Moreover, the metabolic and immune infiltration statuses of the two risk groups were significantly different. In the high-risk group, the expression levels of immune checkpoints, TGF-ß, and C-ECM genes, whose functions are related to immune escape and immunotherapy failure, were also upregulated. CONCLUSIONS: In summary, we developed a novel metabolism-related gene signature to provide more powerful prognostic evaluation information with potential ability to predict the immunotherapy efficiency and guide early treatment for HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...