Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Langmuir ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739539

RESUMEN

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

2.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709874

RESUMEN

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Asunto(s)
Exosomas , Glioblastoma , Inmunoterapia , Ganglios Linfáticos , Exosomas/química , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Animales , Ratones , Geles/química , Células Dendríticas/inmunología , Linfocitos T/inmunología , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Ratones Endogámicos C57BL
3.
Artículo en Inglés | MEDLINE | ID: mdl-38706659

RESUMEN

Background: This study aims to analyze the safety and clinical efficacy of using double posterolateral coaxial portals for endoscopic treatment of posterior ankle impingement syndrome (PAIS), a procedure that has gained popularity in recent times. Methods: Six fresh foot samples were randomly selected to measure the distances of two posterolateral portals to the sural nerve in different positions (plantar flexion 10°, dorsiflexion 30°, and plantar flexion 30°) for safety evaluation. A prospective analysis was conducted on the clinical efficacy of the operative approach for endoscopic management of posterior ankle impingement syndrome, including evaluation of effectiveness and complications. Results: In this study, the mean distances of the first and second portals to the sural nerve were measured in different ankle positions. The distances were found to be 2.26 ± 0.22 cm and 1.59 ± 0.12 cm in the plantar flexion 10° position, 2.21 ± 0.21 cm and 1.55 ± 0.12 cm in the dorsiflexion 30° position, and 2.46 ± 0.29 cm and 1.73 ± 0.19 cm in the plantar flexion 30° position, demonstrating a significant safety margin from the nerve. A total of 38 patients underwent endoscopic treatment for posterior ankle impingement syndrome using double posterolateral coaxial portals between January 2012 and December 2017. This surgical approach provided access to the subtalar joint and posterior ankle region. The patients were followed up for an average of 38.2 months (24-72 months), with a satisfaction rate of 94.7%. There were no reported complications, and significant improvements were observed in both visual analogue scale (VAS) and The American Orthopedic Foot and Ankle Society Score (AOFAS) scores postoperatively. The VAS score decreased from 5.68 to 0.51 (P < 0.001), while the AOFAS score increased from 71.68 to 92.34 (P < 0.001), resulting in an excellent/good rate of 97.3%. Conclusion: The use of double posterolateral coaxial portals in the treatment of posterior ankle impingement syndrome offers several advantages, including improved safety, reduced risk of nerve injury, enhanced visualization of the posterior ankle and subtalar joint, favorable clinical outcomes, and minimal complications.

4.
Biosens Bioelectron ; 257: 116346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688230

RESUMEN

The field of organic photoelectrochemical transistor (OPECT) is newly emerged, with increasing efforts attempting to utilize its properties in biological sensing. Advanced materials with new physicochemical properties have proven important to this end. Herein, we report a metal-organic polymers-gated OPECT biosensing exemplified by CuⅠ-arylacetylide polymers (CuAs)-modulated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel. Both the photoelectrochemical properties and gating capability of CuAs are explored and optimized for high-efficacy photogating. Morever, based on its inherent structure, the specific reaction between CuAs and sulfur ions (S2-) is revealed and S2--mediated microRNA-21 detection is realized by linking with nucleic acid amplification and alkaline phosphatase catalytic chemistry. This work introduces metal-organic polymers as gating materials for OPECT biosensing.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs , Polímeros , Poliestirenos , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Polímeros/química , Poliestirenos/química , MicroARNs/análisis , MicroARNs/sangre , Cobre/química , Humanos , Fosfatasa Alcalina/química , Límite de Detección , Tiofenos
5.
Front Immunol ; 15: 1384270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576620

RESUMEN

With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Trastornos Mentales , Microbiota , Humanos , Encéfalo/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Trastornos Mentales/metabolismo
6.
Front Immunol ; 15: 1377270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585268

RESUMEN

Introduction: Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods: First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results: We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion: Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Edición Génica , Regulación hacia Abajo
7.
J Clin Invest ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662453

RESUMEN

Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype which potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and has implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.

8.
Front Plant Sci ; 15: 1338169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595766

RESUMEN

The pyridine alkaloid nicotine acts as one of best-studied plant resistant traits in tobacco. Previous research has shown that NtERF199 and NtERF189, acting as master regulators within the NIC1 and NIC2 locus, quantitatively contribute to nicotine accumulation levels in N. tabacum. Genome editing-created Nic1(Nterf199) and Nic2 (Nterf189) double mutant provides an ideal platform for precisely dissecting the defensive role of nicotine and the connection between the nicotine biosynthetic pathway with other putative metabolic networks. Taking this advantage, we performed a comparative transcriptomic analysis to reevaluate the potential physiological and metabolic changes in response to nicotine synthesis defect by comparing the nic1nic2 and NIC1NIC2 plants. Our findings revealed that nicotine reduction could systematically diminishes the expression intensities of genes associated with stimulus perception, signal transduction and regulation, as well as secondary metabolic flux. Consequently, this global expression reduction might compromise tobacco adaptions to environmental fitness, herbivore resistances, and plant growth and development. The up-regulation of a novel set of stress-responsive and metabolic pathway genes might signify a newly established metabolic reprogramming to tradeoff the detrimental effect of nicotine loss. These results offer additional compelling evidence regarding nicotine's critical defensive role in nature and highlights the tight link between nicotine biosynthesis and gene expression levels of quantitative resistance-related genes for better environmental adaptation.

10.
Anal Chem ; 96(17): 6847-6852, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639290

RESUMEN

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Asunto(s)
Cobre , Técnicas Electroquímicas , Sulfuros , Tiofenos , Técnicas Electroquímicas/instrumentación , Cobre/química , Sulfuros/química , Compuestos de Cadmio/química , Técnicas Biosensibles/instrumentación , Bismuto/química , Transistores Electrónicos , Procesos Fotoquímicos , Poliestirenos/química , MicroARNs/análisis , Electrodos , Polímeros/química
11.
Eur Radiol ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546792

RESUMEN

OBJECTIVE: To evaluate the efficacy, safety, and improvement of symptoms by ultrasound-guided microwave ablation (MWA) for patients with large benign thyroid nodules (BTNs). METHODS: Eighty-seven patients with 87 BTNs (≥ 4 cm) treated with MWA between April 2015 and March 2021 were enrolled in this retrospective multicenter study, with clinical and ultrasound examinations performed at the 1st, 3rd, 6th, and 12th months. A multivariable linear mixed effects model was employed to explore the alterations in volume and volume reduction ratio (VRR), as well as the potential factors associated with VRR. RESULTS: The mean age of the 87 patients was 45.69 ± 14.21 years (range 18-76 years), and the ratio of men to women was 1:4.8. The mean volumes were much decreased at the 12th month after ablation compared to the initial volumes (p < .001). The mean VRR was 76.09% at the 12th month. The technique efficacy (VRR > 50%) was 90.80% at the 12th month. A multivariate analysis revealed that VRR was related to the initial volume (p = .015), annular flow (p = .010), and nodule composition (p = .024). The mean symptomatic score decreased from 4.40 ± 0.28 to 0.26 ± 0.06 at the 12th month (p < .001). At the same time, the mean cosmetic score decreased from 3.22 ± 0.10 to 1.31 ± 0.08 (p < .001). CONCLUSION: MWA could serve as a safe and effective therapy for large BTNs, significantly reducing the volume of BTNs and significantly improving compressive symptoms and appearance problems. CLINICAL RELEVANCE STATEMENT: Microwave ablation could serve as a safe and effective therapy for large benign thyroid nodules, leading to significant volume reduction and satisfied symptom and cosmetic alleviation period. KEY POINTS: • This multicenter study investigated the feasibility and safety of microwave ablation for large benign thyroid nodules. • After ablation, the nodule volume was significantly reduced, and patients' symptoms and appearance problems were significantly improved. • Microwave ablation is feasible for large benign thyroid nodules and has been a supplement treatment.

12.
Front Microbiol ; 15: 1374646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550870

RESUMEN

Pseudorabies virus can cause inflammation in the central nervous system and neurological symptoms. To further investigate the protective mechanism of PRV XJ delgE/gI/TK in the central nervous system, an intracranial PRV-infection mice model was developed. The results demonstrated that immunization with PRV XJ delgE/gI/TK successfully prevented death caused by PRV-intracranial infection. Subsequently, the brains were collected for transcriptome and metabolome analysis. GO and KEGG enrichment analysis indicated that the differentially expressed genes were primarily enriched in pathways such as TNF, NOD-like receptor, JAK-STAT, MAPK, IL-17 and apoptosis signaling. Metabolomics analysis revealed that the differential metabolites were mainly associated with pathways such as fatty acid degradation, arachidonic acid metabolism, linoleic acid metabolism and unsaturated fatty acid biosynthesis. The combined analysis of metabolites and differentially expressed genes revealed a strong correlation between the differential metabolites and TNF, PI3K, and MAPK signaling pathways. Anti-inflammatory metabolites have been shown to inhibit the inflammatory response and prevent mouse death caused by PRV infection. Notably, when glutathione was injected intracranially and dihydroartemisinin was injected intraperitoneally, complete protection against PRV-induced death in mice was observed. Moreover, PRV activates the PI3K/AKT signaling pathway. In conclusion, our study demonstrates that PRV XJ delgE/gI/TK can protects intracranially infected mice from death by regulating various metabolites with anti-inflammatory functions post-immunization.

13.
Front Plant Sci ; 15: 1329697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501140

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system has been widely applied in cultivated crops, but limited in their wild relatives. Nicotiana alata is a typical wild species of genus Nicotiana that is globally distributed as a horticultural plant and well-studied as a self-incompatibility model. It also has valuable genes for disease resistance and ornamental traits. However, it lacks an efficient genetic transformation and genome editing system, which hampers its gene function and breeding research. In this study, we developed an optimized hypocotyl-mediated transformation method for CRISPR-Cas9 delivery. The genetic transformation efficiency was significantly improved from approximately 1% to over 80%. We also applied the CRISPR-Cas9 system to target the phytoene desaturase (NalaPDS) gene in N. alata and obtained edited plants with PDS mutations with over 50% editing efficiency. To generate self-compatible N. alata lines, a polycistronic tRNA-gRNA (PTG) strategy was used to target exonic regions of allelic S-RNase genes and generate targeted knockouts simultaneously. We demonstrated that our system is feasible, stable, and high-efficiency for N. alata genome editing. Our study provides a powerful tool for basic research and genetic improvement of N. alata and an example for other wild tobacco species.

14.
J Diabetes Sci Technol ; : 19322968241236771, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491800

RESUMEN

BACKGROUND: Combining a continuous glucose monitor with an insulin delivery cannula (CGM-IS) could benefit clinical outcomes. We evaluated the feasibility of a single-needle insertion electrochemical investigational CGM-IS (Pacific Diabetes Technologies, Portland, Oregon) in type 1 diabetes adults. METHODS: Following 48 hours run-in using a Medtronic 780G in manual mode with a commercial insulin set, 12 participants commenced insulin delivery using the CGM-IS. A standardized test meal was eaten on the mornings of days 1 and 4. Venous samples were collected every 10 minutes one hour prior to and 15 minutes post-meal for four hours. CGM-IS glucose measurements were post-processed with a single capillary blood calibration during warm-up and benchmarked against YSI. A Dexcom G6 sensor was worn post-consent to study end. RESULTS: Mean absolute relative difference (MARD) for the CGM-IS glucose measurements was 9.2% (484 paired data points). Consensus error grid revealed 88.6% within zone A and 100% in A + B. Mean (SD) % bias was -3.5 (11.7) %. There were 35 paired YSI readings <100 mg/dL cutoff and 449 ≥100 mg/dL with 81.4% within ±15 mg/dL or ±15%, and 89.9% within ±20 mg/dL or ±20%. Two cannula occlusions required discontinuation of insulin delivery: one at 70 hours post insertion and another during the day 4 meal test. Mean (SD) Dexcom glucose measurements during run-in and between meal tests was respectively 161.3 ± 27.3 mg/dL versus 158.0 ± 25.6 mg/dL; P = .39 and corresponding mean total daily insulin delivered by the pump was 58.0 ± 25.4 Units versus 57.1 ± 28.8 Units; P = .47. CONCLUSIONS: Insulin delivery and glucose sensing with the investigational CGM-IS was feasible. Longer duration studies are needed.

16.
Diabetes Care ; 47(4): 747-755, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381515

RESUMEN

OBJECTIVE: To determine feasibility and compare acceptance of an investigational Medtronic enhanced advanced hybrid closed-loop (e-AHCL) system in adults with type 1 diabetes with earlier iterations. RESEARCH DESIGN AND METHODS: This nonrandomized three-stage (12 weeks each) exploratory study compared e-AHCL (Bluetooth-enabled MiniMed 780G insulin pump with automatic data upload [780G] incorporating an updated algorithm; calibration-free all-in-one disposable sensor; 7-day infusion set) preceded by a run-in (non-Bluetooth 780G [670G V4.0 insulin pump] requiring manual data upload; Guardian Sensor 3 [GS3] requiring calibration; 3-day infusion set), stage 1 (780G; GS3; 3-day infusion set), and stage 2 (780G; calibration-free Guardian Sensor 4; 3-day infusion set). Treatment satisfaction was assessed by Diabetes Technology Questionnaire (DTQ)-current (primary outcome) and other validated treatment satisfaction tools with glucose outcomes by continuous glucose monitoring metrics. RESULTS: Twenty-one of 22 (11 women) participants (baseline HbA1c 6.7%/50 mmol/mol) completed the study. DTQ-current scores favored e-AHCL (123.1 [17.8]) versus run-in (101.6 [24.2]) and versus stage 1 (110.6 [20.8]) (both P < 0.001) but did not differ from stage 2 (119.4 [16.0]; P = 0.271). Diabetes Medication System Rating Questionnaire short-form scores for "Convenience and Efficacy" favored e-AHCL over run-in and all stages. Percent time in range 70-180 mg/dL was greater with e-AHCL versus run-in and stage 2 (+2.9% and +3.6%, respectively; both P < 0.001). Percent times of <70 mg/dL for e-AHCL were significantly lower than run-in, stage 1, and stage 2 (-0.9%, -0.6%, and -0.5%, respectively; all P < 0.01). CONCLUSIONS: e-AHCL was feasible. User satisfaction increased compared with earlier Medtronic HCL iterations without compromising glucose control.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Adulto , Humanos , Femenino , Glucemia , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Algoritmos , Sistemas de Infusión de Insulina , Insulina/uso terapéutico , Hipoglucemiantes/uso terapéutico
18.
MycoKeys ; 101: 275-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333551

RESUMEN

Pestalotiopsissensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsismanyueyuanani and four new records, N.camelliae-oleiferae, N.haikouensis, P.chamaeropis and P.hispanica, were reported for the first time in Taiwan. In addition, P.formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa.

19.
Environ Sci Pollut Res Int ; 31(13): 19687-19698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366321

RESUMEN

As a visible-light response semiconductor materials, bismuth vanadate (BiVO4) is extensively applied in photodegradation organic dye field. In this study, we synthesized C3N5 nanosheets and coupled with decahedral BiVO4 to construct a Z-scheme C3N5/BiVO4 heterostructure with close interface contact. By introducing C3N5 into BiVO4, the built Z-scheme transfer pathway provides silky channel for charge carrier migration between different moieties and enables photoexcited electrons and holes accumulated on the surface of BiVO4 and C3N5. The accelerated separation of charge carriers ensures C3N5/BiVO4 heterostructures with a powerful oxidation capacity compared with pure BiVO4. Due to the synergistic effect in Z-scheme heterostructure, the C3N5/BiVO4 demonstrated an improved photodegradation ability of rhodamine B (RhB) and methylene blue (MB) that of bare BiVO4.


Asunto(s)
Luz , Semiconductores , Catálisis , Fotólisis , Azul de Metileno/química
20.
Pharm Res ; 41(3): 513-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383935

RESUMEN

BACKGROUND: Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS: Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS: In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS: This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.


Asunto(s)
Panax notoginseng , Saponinas , Animales , Acetilcolina , Encéfalo , Albúminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA