Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660792

RESUMEN

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

2.
Angew Chem Int Ed Engl ; 63(17): e202401507, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38407548

RESUMEN

Rechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn. The single (002)-texture ensures large-scale epitaxial and dense Zn deposition, while the reduction in grain boundaries significantly minimizes intergranular reactions. These features enable large grain single (002)-textured Zn shows planar and dense Zn deposition under harsh conditions (100 mA cm-2, 100 mAh cm-2), impressive reversibility in Zn||Zn symmetric cell (3280 h under 1 mA cm-2, 830 h under 10 mAh cm-2), and long cycling stability over 180 h with a high depth of discharge value of 75 %. This study successfully addresses the issue of uncontrollable texture formation in Zn foils following routine annealing treatments with temperatures below the Zn melting point. The findings of this study establish a highly efficient strategy for fabricating highly reversible single (002)-textured Zn anodes.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167022, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38216068

RESUMEN

BACKGROUND: CAMK1 has been shown to be involved in human disease progression via regulating mitochondrial dynamics. However, whether CAMK1 mediates mitochondrial dynamics to regulate diabetic nephropathy (DN) process remains unclear. METHODS: Mice were injected with streptozotocin (STZ) to mimic diabetic mice models in vivo, and mice with proximal tubule-specific knockout of CAMK1 (CAMK1-KO) were generated. HK-2 cells were treated with high-glucose (HG) to mimic DN cell model in vitro. Histopathological analysis was performed to confirm kidney injury in mice. ROS production and apoptosis were assessed by DHE staining and TUNEL staining. Mitochondria morphology was observed and analyzed by electron microscopy. Mitochondrial membrane potential was detected by JC-1 staining, and cell proliferation was measured by EdU assay. The mRNA and protein expression were examined by qRT-PCR, western blot and immunostaining. RNA interaction was confirmed by RIP assay and dual-luciferase reporter assay. The mRNA stability was tested by actinomycin D treatment, and m6A level was examined by MeRIP assay. RESULTS: CAMK1 was reduced in DN patients and STZ-induced diabetic mice. Conditional deletion of CAMK1 aggravated kidney injury and promoted mitochondrial fission in diabetic mice. CAMK1 overexpression inhibited mitochondrial fission to alleviate HG-induced HK-2 cell apoptosis. IGF2BP3 promoted the stability of CAMK1 mRNA by m6A modification. IGF2BP3 inhibited mitochondrial fission to repress cell apoptosis in vitro and kidney injury in vivo by increasing CAMK1 expression. CONCLUSION: IGF2BP3-mediated CAMK1 mRNA stability alleviated DN progression by inhibiting mitochondria fission.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Humanos , Ratones , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/patología , Túbulos Renales/patología , Dinámicas Mitocondriales/fisiología , ARN Mensajero/metabolismo
4.
Angew Chem Int Ed Engl ; 62(30): e202304121, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226711

RESUMEN

The practical implementation of high-voltage lithium-rich manganese oxide (LRMO) cathode is limited by the unanticipated electrolyte decomposition and dissolution of transition metal ions. The present study proposes a bi-affinity electrolyte formulation, wherein the sulfonyl group of ethyl vinyl sulfone (EVS) imparts a highly adsorptive nature to LRMO, while fluoroethylene carbonate (FEC) exhibits a reductive nature towards Li metal. This interface modulation strategy involves the synergistic use of EVS and FEC as additives to form robust interphase layers on the electrode. As-formed S-endorsed but LiF-assisted configuration cathode electrolyte interphase with a more dominant -SO2 - component may promote the interface transport kinetics and prevent the dissolution of transition metal ions. Furthermore, the incorporation of S component into the solid electrolyte interphase and the reduction of its poorly conducting component can effectively inhibit the growth of lithium dendrites. Therefore, a 4.8 V LRMO/Li cell with optimized electrolyte may demonstrate a remarkable retention capacity of 97 % even after undergoing 300 cycles at 1 C.

5.
Chem Asian J ; 18(11): e202300360, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144454

RESUMEN

This Special Collection highlights the latest developments in the field of gel electrolytes. In this Editorial, guest editors Haitao Zhang, Du Yuan, Jin Zhao, Xiaoyan Ji, and Yi-Zhou Zhang briefly introduced the research focusing on chemistry and applications of gel electrolytes in this special collection.

6.
Chem Asian J ; 18(4): e202201280, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36632721

RESUMEN

Gel electrolytes are being intensively explored for aqueous rechargeable zinc-ion batteries, especially towards high performance and multi-functionalities. Water plays a central role on the fundamental properties, interface reaction/interaction, and performance of the gel-type zinc electrolyte. In this review, the influence of water on the physiochemical properties of gel electrolytes is focused on. The correlation between water activity and the fundamental properties of zinc electrolytes is presented. Current approaches and challenges in manipulating water activity and the consequent influence on the electrochemical stability, transport, and interface kinetics of gel electrolytes are summarized. An outlook on approaches to tuning and investigating water activity is provided to shed light on the design of advanced gel electrolytes.

7.
Adv Sci (Weinh) ; 10(8): e2206469, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36646504

RESUMEN

Novel electrolyte is being pursued toward exploring Zn chemistry in zinc ion batteries. Here, a fluorine-free liquid crystal (LC) ionomer-type zinc electrolyte is presented, achieving simultaneous regulated water activity and long-range ordering of conduction channels and SEI. Distinct from water network or local ordering in current advances, long-range ordering of layered water channels is realized. Via manipulating water activity, conductivities range from ≈0.34 to 15 mS cm-1 , and electrochemical window can be tuned from ≈2.3-4.3 V. The Zn|Zn symmetric cell with LC gel exhibits highly reversible Zn stripping/plating at 5 mA cm-2 and 5 mAh cm-2 for 800 h, with retained ordering of water channels. The capability of gel for inducing in situ formation of long-range ordered layer SEI associated with alkylbenzene sulfonate anion is uncovered. V2 O5 /Zn cell with the gel shows much improved cycling stability comparing to conventional zinc electrolytes, where the preserved structure of V2 O5 is associated with the efficiently stabilized Zn anode by the gel. Via long-range ordering-induced regulation on ion transport, electrochemical stability, and interfacial reaction, the development of LC electrolyte provides a pathway toward advancing aqueous rechargeable batteries.

8.
Sci Total Environ ; 855: 158880, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36130629

RESUMEN

Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Titanio/química , Oxidación-Reducción , Óxidos/química , Electrodos
9.
iScience ; 24(10): 103157, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34646992

RESUMEN

Energy storage systems are crucial in the deployment of renewable energies. As one of the most promising solutions, redox flow batteries (RFBs) are still hindered for practical applications by low energy density, high cost, and environmental concerns. To breakthrough the fundamental solubility limit that restricts boosting energy density of the cell, we here demonstrate a new RFB system employing polysulfide and high concentrated ferricyanide (up to 1.6 M) species as reactants. The RFB cell exhibits high cell performances with capacity retention of 96.9% after 1,500 cycles and low reactant cost of $32.47/kWh. Moreover, neutral aqueous electrolytes are environmentally benign and cost-effective. A cell stack is assembled and exhibits low capacity fade rate of 0.021% per cycle over 642 charging-discharging steps (spans 60 days). This neutral polysulfide/ferricyanide RFB technology with high safety, long-duration, low cost, and feasibility of scale-up is an innovative design for storing massive energy.

10.
Int J Biol Sci ; 17(13): 3343-3355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512151

RESUMEN

Mesangial cell (MC) proliferation and matrix expansion are basic pathological characteristics of IgA nephropathy (IgAN). However, the stepwise mechanism of MC proliferation and the exact set of related signaling molecules remain largely unclear. In this study, we found a significant upregulation of miR-214-3p in the renal cortex of IgAN mice by miRNA sequencing. In situ hybridization analysis showed that miR-214-3p expression was obviously elevated in MCs in the renal cortex in IgAN. Functionally, knockdown of miR-214-3p alleviated mesangial hypercellularity and renal lesions in IgAN mice. In vitro, the inhibition of miR-214-3p suppressed MC proliferation and arrested G1-S cell cycle pSrogression in IgAN. Mechanistically, a luciferase reporter assay verified PTEN as a direct target of miR-214-3p. Downregulation of miR-214-3p increased PTEN expression and reduced p-JNK and p-c-Jun levels, thereby inhibiting MC proliferation and ameliorating renal lesions in IgAN. Moreover, these changes could be attenuated by co-transfection with PTEN siRNA. Collectively, these results illustrated that miR-214-3p accelerated MC proliferation in IgAN by directly targeting PTEN to modulate JNK/c-Jun signaling. Therefore, miR-214-3p may represent a novel therapeutic target for IgAN.


Asunto(s)
Glomerulonefritis por IGA/metabolismo , Células Mesangiales/metabolismo , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Femenino , Glomerulonefritis por IGA/patología , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Células Mesangiales/patología , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-jun/metabolismo , Distribución Aleatoria
11.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807945

RESUMEN

Slopes with carbonaceous mudstone (CM) are widely distributed in the southwest of China and have experienced numerous geological disasters in special climate, especially in rainfall conditions. Therefore, novel materials to stabilize CM slopes have attracted increasing interests. However, developing ultra-stable and cost-effective additives for CM slopes is still a great challenge. Herein, a hydrophobic polymeric material (polyvinylidene fluoride, PVDF) is investigated as an additive to enhance the mechanical strength and long-time stability of CM slopes. The PVDF is uniformly dispersed in CM matrix via interfacial interaction. The contact angle of the PVDF-modified carbonaceous mudstone (PVDF-MCM) can reach as high as 103.95°, indicating an excellent hydrophobicity. The unconfined compressive strength (UCS) and tensile strength (TS) of PVDF-MCM have been intensively enhanced to 4.07 MPa and 1.96 MPa, respectively, compared with ~0 MPa of pristine CM. Moreover, the UCS and TS of PVDF-MCM remain at 3.24 MPa and 1.03 MPa even after curing for 28 days in high humidity conditions. Our findings show that the PVDF can improve the hydrophobicity of CM significantly, which leads to super mechanical stability of PVDF-MCM. The excellent performance makes PVDF a promising additive for the development of ultra-stable, long-lifetime and cost-effective carbonaceous mudstone slopes.

12.
Angew Chem Int Ed Engl ; 60(13): 7213-7219, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33381887

RESUMEN

The reversibility of metal anode is a fundamental challenge to the lifetime of rechargeable batteries. Though being widely employed in aqueous energy storage systems, metallic zinc suffers from dendrite formation that severely hinders its applications. Here we report texturing Zn as an effective way to address the issue of zinc dendrite. An in-plane oriented Zn texture with preferentially exposed (002) basal plane is demonstrated via a sulfonate anion-induced electrodeposition, noting no solid report on (002) textured Zn till now. Anion-induced reconstruction of zinc coordination is revealed to be responsible for the texture formation. Benchmarking against its (101) textured-counterpart by the conventional sulphate-based electrolyte, the Zn (002) texture enables highly reversible stripping/plating at a high current density of 10 mA cm-2 , showing its dendrite-free characteristics. The Zn (002) texture-based aqueous zinc battery exhibits excellent cycling stability. The developed anion texturing approach provides a pathway towards exploring zinc chemistry and prospering aqueous rechargeable batteries.

14.
Small ; 16(38): e2003321, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32812393

RESUMEN

With good operation flexibility and scalability, vanadium redox-flow batteries (VRBs) stand out from various electrochemical energy storage (EES) technologies. However, traditional electrodes in VRBs, such as carbon and graphite felt with low electrochemical activities, impede the interfacial charge transfer processes and generate considerable overpotential loss, which significantly decrease the energy and voltage efficiencies of VRBs. Herein, by using a facile electrodeposition technique, Prussian blue/carbon felt (PB/CF) composite electrodes with high electrochemical activity for VRBs are successfully fabricated. The PB/CF electrode exhibits excellent electrochemical activity toward VO2+ /VO2 + redox couple in VRB with an average cell voltage efficiency (VE) of 90% and an energy efficiency (EE) of 88% at 100 mA cm-2 . In addition, due to the uniformly distributed PB particles that are strongly bound to the surface of carbon fibers in CF, VRBs with the PB/CF electrodes show much better long-term stabilities compared with the pristine CF-based battery due to the redox-mediated catalysis. A VRB stack consisting of three single cells (16 cm2 ) is also constructed to assess the reliability of the redox-mediated PB/CF electrodes for large-scale application. The facile technique for the high-performance electrode with redox-mediated reaction is expected to shed new light on commercial electrode design for VRBs.

15.
ACS Appl Mater Interfaces ; 12(32): 36110-36118, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32701255

RESUMEN

Aqueous rechargeable zinc-ion batteries are emerging as attractive alternatives for post-lithium-ion batteries. However, their electrochemical performances are restricted by the narrow working window of materials in aqueous electrolytes. Herein, a Ni-mediated VO2-B nanobelt [(Ni)VO2] has been designed to optimize the intrinsic electronic structure of VO2-B and thus achieve much more enhanced zinc-ion storage. Specifically, the Zn/(Ni)VO2 battery yields a good rate capability (182.0 mA h g-1 at 5 A g-1) with a superior cycling stability (130.6 mA h g-1 at 10 A g-1 after 2000 cycles). Experimental and theoretical methods reveal that the introduction of Ni2+ in the VO2 tunnel structure can effectively provide high surface reactivity and improve the intrinsic electronic configurations, thus resulting in good kinetics. Furthermore, H+ and Zn2+ cointercalation processes are determined via in situ X-ray diffraction and supported by ex situ characterizations. Additionally, quasi-solid-state Zn/(Ni)VO2 soft-packaged batteries are assembled and provide flexibility in battery design for practical applications. The results provide insights into the interrelationships between the intrinsic electronic structure of the cathode and the overall electrochemical performance.

16.
Chem Asian J ; 15(15): 2357-2363, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32166875

RESUMEN

Ion exchange membranes play a key role in all vanadium redox flow batteries (VRFBs). The mostly available commercial membrane for VRFBs is Nafion. However, its disadvantages, such as high cost and severe vanadium-ion permeation, become obstacles for large-scale energy storage. It is thus crucial to develop an efficient membrane with low permeability of vanadium ions and low cost to promote commercial applications of VRFBs. In this study, graphene oxide (GO) has been employed as an additive to the Nafion 212 matrix and a composite membrane named rN212/GO obtained. The thickness of rN212/GO has been reduced to only 41 µm (compared with 50 µm Nafion 212), which indicates directly lower cost. Meanwhile, rN212/GO shows lower permeability of vanadium ions and area-specific resistance compared to the Nafion 212 membrane due to the abundant oxygen-containing functional groups of GO additives. The VRFB cells with the rN212/GO membrane show higher Coulombic efficiencies and lower capacity decay than those of VRFB cells with the Nafion 212 membrane. Therefore, the cost-effective rN212/GO composite membrane is a promising alternative to suppress migration of vanadium ions across the membrane to set up VRFB cells with better performances.

17.
ChemSusChem ; 12(21): 4889-4900, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31475452

RESUMEN

Metallic zinc is an ideal anode material for rechargeable zinc-ion batteries (ZIBs), taking us beyond the lithium-ion era. In-depth understanding of the Zn metal surface is currently required owing to diverse but uncorrelated data about the Zn surface in mild environments. Herein, the surface chemistry of Zn is elucidated and the formation and growth of a zinc layer hydroxide is verified as an effective solid-electrolyte interface (SEI) during stripping/plating in mild electrolyte. The effects of battery separators/membranes on the growth of an effective SEI and deposited Zn are then investigated from the perspectives of structure, morphology, compositions, and interfacial impedance. Nafion-based membranes enable the formation of a planar SEI, which protects the metal surface and prevents short circuiting. Biomass@Nafion membranes are developed and assessed with a long cycle life of over 400 h compared with below 200 h for physical separators. The mechanism behind this is attributed to interaction between the membranes and Zn2+ , which enables reshaping of the Zn2+ coordination in an aqueous medium. Together with the advantages of using the membranes in ß-MnO2 |ZnSO4 |Zn, our work provides a feasible way to design an effective SEI for advancing the use of Zn anodes in rechargeable ZIBs.

18.
ChemSusChem ; 12(2): 379-396, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30480870

RESUMEN

Multivalent-ion batteries built on water-based electrolytes represent energy storage at suitable price points, competitive performance, and enhanced safety. However, to comply with modern energy-density requirements, the battery must be reversible within an operating voltage window greater than 1.23 V or the electrochemical stability limits of free water. Taking advantage of its powerful solvation and catalytic activities, adding water to electrolyte preparations can unlock a wider gamut of liquid mixtures compared with strictly nonaqueous systems. However, a point-by-point sweep of all potential formulations is arduous and ineffective without some form of systematic rationalization. The present Review consolidates recent progress, pitfalls, limits, and insights critical to expediting aqueous electrolyte designs to boost multivalent-ion battery outputs.

19.
Front Chem ; 6: 286, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140669

RESUMEN

Proton exchange membrane is the key factor of vanadium redox flow battery (VRB) as their stability largely determine the lifetime of the VRB. In this study, a SPEEK/MWCNTs-OH composite membrane with ultrahigh stability is constructed by blending sulfonated poly(ether ether ketone) (SPEEK) with multi-walled carbon nanotubes toward VRB application. The carbon nanotubes disperse homogeneously in the SPEEK matrix with the assistance of hydroxyl group. The blended membrane exhibits 94.2 and 73.0% capacity retention after 100 and 500 cycles, respectively in a VRB single cell with coulombic efficiency of over 99.4% at 60 mA cm-2 indicating outstanding capability of reducing the permeability of vanadium ions and enhancing the transport of protons. The ultrahigh stability and low cost of the composite membrane make it a competent candidate for the next generation larger-scale vanadium redox flow battery.

20.
Crit Care Med ; 46(8): e779-e787, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29727369

RESUMEN

OBJECTIVES: The physiology of nearly all mammalian organisms are entrained by light and exhibit circadian rhythm. The data derived from animal studies show that light influences immunity, and these neurophysiologic pathways are maximally entrained by the blue spectrum. Here, we hypothesize that bright blue light reduces acute kidney injury by comparison with either bright red or standard, white fluorescent light in mice subjected to sepsis. To further translational relevance, we performed a pilot clinical trial of blue light therapy in human subjects with appendicitis. DESIGN: Laboratory animal research, pilot human feasibility trial. SETTING: University basic science laboratory and tertiary care hospital. SUBJECTS: Male C57BL/6J mice, adult (> 17 yr) patients with acute appendicitis. INTERVENTIONS: Mice underwent cecal ligation and puncture and were randomly assigned to a 24-hour photoperiod of bright blue, bright red, or ambient white fluorescent light. Subjects with appendicitis were randomized to receive postoperatively standard care or standard care plus high-illuminance blue light. MEASUREMENTS AND MAIN RESULTS: Exposure to bright blue light enhanced bacterial clearance from the peritoneum, reduced bacteremia and systemic inflammation, and attenuated the degree of acute kidney injury. The mechanism involved an elevation in cholinergic tone that augmented tissue expression of the nuclear orphan receptor REV-ERBα and occurred independent of alterations in melatonin or corticosterone concentrations. Clinically, exposure to blue light after appendectomy was feasible and reduced serum interleukin-6 and interleukin-10 concentrations. CONCLUSIONS: Modifying the spectrum of light may offer therapeutic utility in sepsis.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Apendicitis/terapia , Fototerapia/métodos , Sepsis/complicaciones , Adulto , Animales , Citocinas/biosíntesis , Femenino , Humanos , Hidrocortisona/sangre , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas Microbiológicas , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...