Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38838666

RESUMEN

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina , Núcleo Celular , Neurogénesis , Neuronas , Proteína I de Unión a Poli(A) , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Neuronas/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Animales , ARN/metabolismo , ARN/genética , Línea Celular , Diferenciación Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
2.
BMC Med Imaging ; 24(1): 114, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760689

RESUMEN

Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is proposed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experiments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared with the best performing method, the evaluation metric is 0.07-2 higher on both datasets. The project can be found at: https://github.com/sunpeipei2024/low-dose-CBCT .


Asunto(s)
Algoritmos , Tornillos Óseos , Tomografía Computarizada de Haz Cónico , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Cigoma/diagnóstico por imagen , Dosis de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Intensificación de Imagen Radiográfica/métodos
3.
Clin Rheumatol ; 43(7): 2229-2236, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767710

RESUMEN

OBJECTIVE: To evaluate the efficacy and safety of telitacicept in SLE patients specifically with hematological involvement. METHOD: A total of 22 patients with SLE and hematological involvement were included in this study. These patients received telitacicept in addition to standard therapy. We compared their demographic characteristics, clinical manifestations, and laboratory indicators before and after the administration of telitacicept. RESULTS: A total of 22 patients received telitacicept treatment for a median duration of 10.4 months (ranging from 6 to 19 months). Following telitacicept therapy, significant improvements were observed in various parameters compared to baseline. Specifically, white blood cell count increased from (3.98 ± 1.80) 109/L to (6.70 ± 2.47) 109/L, (P = 0.002), hemoglobin levels increased from (100 ± 19) g/L to (125 ± 22) g/L, (P < 0.001), and platelet count increased from (83 ± 60) 109/L to (161 ± 81) 109/L, (P = 0.004). SLE Disease Activity Index (SLEDAI) scores decreased from 12(5,15) to 0(0,4), (P < 0.001). Additionally, C3 and C4 levels showed improvement. Telitacicept treatment also resulted in a significant reduction in serum IgG levels and daily prednisone dosage. Only one adverse event (4.5%) was reported during the treatment, which was a urinary tract infection. CONCLUSION: The combination of telitacicept and standard treatment demonstrated significant improvements in anemia, as well as increased leukocyte and platelet levels in patients with SLE and hematological involvement. Importantly, the observed adverse events were manageable and controllable. Key Points • Telitacicept effectively improves anemia, clinical outcomes, and increases leukocyte and platelet counts. • Treatment with telitacicept leads to decreased levels of lgG, IgA, anti-dsDNA, and SLEDAI scores, while serum complement C3 and C4 returned to normal. • During the follow-up period there were observed changes in individual parameters, clinical symptoms, and organ involvement, all without significant adverse events.


Asunto(s)
Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/sangre , Femenino , Masculino , Adulto , Resultado del Tratamiento , Persona de Mediana Edad , Recuento de Plaquetas , Recuento de Leucocitos , Hemoglobinas/análisis , Índice de Severidad de la Enfermedad , Adulto Joven , Complemento C3/metabolismo
4.
J Endod ; 50(7): 954-961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604473

RESUMEN

INTRODUCTION: The evaluation of pulp status is crucial for avulsed immature permanent teeth after replantation. In addition to commonly used clinical and radiographic examinations providing clinical evidence, the oxygen saturation test may offer valuable assistance. The aim of this study was to analyze the efficacy of a pulse oximeter in evaluating pulp status in avulsed and replanted immature permanent teeth. METHODS: A prospective observational study was performed including 51 avulsed and replanted immature permanent teeth. Routine clinical and radiographic examinations were performed and used as the basis for the diagnosis of pulp status during the 1-year follow-up period. Meanwhile, the oxygen saturation values of these teeth were recorded using a modified pulse oximeter at each visit. RESULTS: Seven teeth completed pulp revascularization (success group), whereas 44 teeth failed to revascularize (failure group). Abnormal clinical and/or radiographic manifestations in the failure group were observed at an average period of 42.7 days, which was too late because a high incidence of inflammatory root resorption (43.18%) had occurred. For oxygen saturation tests, teeth in the success group showed an immediate postreplantation oxygen value of 70.71 ± 3.35, then an upward trend starting from the 2-week postreplantation visit, and a significantly increased final value of 81.86 ± 2.34 at the 1-year visit. In contrast, no increase trend was found for teeth in the failure group because abnormal clinical and/or radiographic manifestations emerged. CONCLUSIONS: The oxygen saturation test is a reliable diagnostic method to evaluate pulp status of avulsed teeth as early as 2 weeks after replantation.


Asunto(s)
Saturación de Oxígeno , Avulsión de Diente , Reimplante Dental , Humanos , Reimplante Dental/métodos , Estudios Prospectivos , Niño , Femenino , Masculino , Avulsión de Diente/cirugía , Avulsión de Diente/diagnóstico por imagen , Saturación de Oxígeno/fisiología , Pulpa Dental/irrigación sanguínea , Pulpa Dental/fisiología , Oximetría/métodos , Dentición Permanente , Adolescente , Oxígeno/sangre , Oxígeno/metabolismo
5.
Connect Tissue Res ; 65(1): 53-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978579

RESUMEN

PURPOSE: The important role of non-coding RNAs in odontoblastic differentiation of dental tissue-derived stem cells has been widely demonstrated; however, whether piRNA (a subclass of non-coding RNA) involved in the course of odontoblastic differentiation is not yet available. This study aimed to investigate the expression profile of piRNA during odontogenic differentiation of mDPCs and the potential molecular mechanism in vitro. MATERIALS AND METHODS: The primary mouse dental papilla cells (mDPCs) were isolated from the first molars of 1-day postnatal Kunming mice. Then, they were cultured in odontogenic medium for 9 days. The expression profile of piRNA was detected by Small RNA sequencing. RT-qPCR was used to verify the elevation of piR-368. The mRNA and protein levels of mineralization markers were examined by qRT-PCR and Western blot analysis. Alkaline phosphatase (ALP) activity and alizarin red S staining were conducted to assess the odontoblastic differentiation ability. RESULTS: We validated piR-368 was significantly upregulated and interference with piR-368 markedly inhibited the odontogenic differentiation of mDPCs. In addition, the relationship between Smad1/5 signaling pathway and piR-368-induced odontoblastic differentiation has been discovered. Finally, we demonstrated Smurf1 as a target gene of piR-368 using dual-luciferase assays. CONCLUSION: This study was the first to illustrate the participation of piRNA in odontoblastic differentiation. We proved that piR-368 promoted odontoblastic differentiation of mouse dental papilla cells via the Smad1/5 signaling pathway by targeting Smurf1.


Asunto(s)
Proteínas de la Matriz Extracelular , ARN de Interacción con Piwi , Animales , Ratones , Diferenciación Celular/genética , Células Cultivadas , Papila Dental/química , Papila Dental/metabolismo , Pulpa Dental/química , Proteínas de la Matriz Extracelular/metabolismo , Odontoblastos , Transducción de Señal , Proteína Smad1/metabolismo
6.
Elife ; 122023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055613

RESUMEN

Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.


Asunto(s)
Calcio , Cromatina , Calcio/metabolismo , Cromatina/metabolismo , Linfocitos T Reguladores , Epigénesis Genética , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo
7.
Res Sq ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37790473

RESUMEN

BMP2 signaling plays a pivotal role in odontoblast differentiation and maturation during odontogenesis. Teeth lacking Bmp2 exhibit a morphology reminiscent of dentinogenesis imperfecta (DGI), associated with mutations in dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) genes. Mechanisms by which BMP2 signaling influences expressions of DSPP and DMP1 and contributes to DGI remain elusive. To study the roles of BMP2 in dentin development, we generated Bmp2 conditional knockout (cKO) mice. Through a comprehensive approach involving RNA-seq, immunohistochemistry, promoter activity, ChIP, and Re-ChIP, we investigated downstream targets of Bmp2. Notably, the absence of Bmp2 in cKO mice led to dentin insufficiency akin to DGI. Disrupted Bmp2 signaling was linked to decreased expression of Dspp and Dmp1, as well as alterations in intracellular translocation of transcription factors Dlx3 and Sp7. Intriguingly, upregulation of Dlx3, Dmp1, Dspp, and Sp7, driven by BMP2, fostered differentiation of dental mesenchymal cells and biomineralization. Mechanistically, BMP2 induced phosphorylation of Dlx3, Sp7, and histone acetyltransferase GCN5 at Thr and Tyr residues, mediated by Akt and Erk42/44 kinases. This phosphorylation facilitated protein nuclear translocation, promoting interactions between Sp7 and Dlx3, as well as with GCN5 on Dspp and Dmp1 promoters. The synergy between Dlx3 and Sp7 bolstered transcription of Dspp and Dmp1. Notably, BMP2-driven GCN5 acetylated Sp7 and histone H3, while also recruiting RNA polymerase II to Dmp1 and Dspp chromatins, enhancing their transcriptions. Intriguingly, BMP2 suppressed the expression of histone deacetylases. we unveil hitherto uncharted involvement of BMP2 in dental cell differentiation and dentine development through pAkt/pErk42/44/Dlx3/Sp7/GCN5/Dspp/Dmp1.

8.
Mol Immunol ; 163: 116-126, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769576

RESUMEN

Pulpitis is a chronic inflammatory process that greatly affects the physical, mental health and life quality of patients. Human dental pulp cells (hDPCs) are essential components of dental pulp tissue and play a significant role in pulpitis. Lipopolysaccharide (LPS) is an initiator of pulpitis and can induce the production of inflammatory cytokines in hDPCs by activating p38 MAPK and NF-κB signaling pathways. Importin7 (IPO7), a member of the importin-ß family, is widely expressed in many tissues. Previous studies have shown that IPO7 mediated nuclear translocation of p-p38 after stimulation, and IPO7 homologous protein IPO8 participated in human dental pulp inflammation. This research aims to investigate whether IPO7 is involved in pulpitis and explore its underlying mechanisms. In the current study, we found the expression of IPO7 was increased in pulpitis tissue. In vitro, hDPCs treated with LPS to mimic the inflammatory environment, the expression of IPO7 was increased. Knockdown of IPO7 significantly inhibited the production of inflammatory cytokines and suppressed the p38 MAPK and NF-κB signaling pathways. Activating the p38 MAPK and NF-κB signaling pathways by the p38 activator and p65 activator reversed the inflammatory responses. IPO7 interacted with p-p38 under LPS stimulation in hDPCs. In addition, the increased binding between IPO7 and p-p38 is associated with the decreased binding ability of IPO7 to Sirt2. In conclusion, we found that IPO7 was highly expressed in pulpitis and played a vital role in modulating human dental pulp inflammation.


Asunto(s)
FN-kappa B , Pulpitis , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Pulpitis/metabolismo , Pulpa Dental/metabolismo , Transducción de Señal , Citocinas/metabolismo , Inflamación/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Carioferinas/metabolismo
9.
Nat Methods ; 20(8): 1159-1169, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443337

RESUMEN

The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation.


Asunto(s)
Benchmarking , ARN Circular , Humanos , ARN Circular/genética , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN/métodos
10.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213079

RESUMEN

Dentin is the major hard tissue of teeth formed by differentiated odontoblasts. How odontoblast differentiation is regulated remains enigmatic. Here, we report that the E3 ubiquitin ligase CHIP is highly expressed in undifferentiated dental mesenchymal cells and downregulated after differentiation of odontoblasts. Ectopic expression of CHIP inhibits odontoblastic differentiation of mouse dental papilla cells, whereas knockdown of endogenous CHIP has opposite effects. Chip (Stub1) knockout mice display increased formation of dentin and enhanced expression of odontoblast differentiation markers. Mechanistically, CHIP interacts with and induces K63 polyubiquitylation of the transcription factor DLX3, leading to its proteasomal degradation. Knockdown of DLX3 reverses the enhanced odontoblastic differentiation caused by knockdown of CHIP. These results suggest that CHIP inhibits odontoblast differentiation by targeting its tooth-specific substrate DLX3. Furthermore, our results indicate that CHIP competes with another E3 ubiquitin ligase, MDM2, that promotes odontoblast differentiation by monoubiquitylating DLX3. Our findings suggest that the two E3 ubiquitin ligases CHIP and MDM2 reciprocally regulate DLX3 activity by catalyzing distinct types of ubiquitylation, and reveal an important mechanism by which differentiation of odontoblasts is delicately regulated by divergent post-translational modifications.


Asunto(s)
Odontoblastos , Diente , Animales , Ratones , Diferenciación Celular/genética , Ratones Noqueados , Diente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Hum Gene Ther ; 34(11-12): 567-577, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37014084

RESUMEN

Dentin is a major type of hard tissue of teeth and plays essential roles for normal tooth function. Odontoblasts are responsible for dentin formation. Mutations or deficiency in various genes affect the differentiation of odontoblasts, leading to irreversible dentin developmental defects in animals and humans. Whether such dentin defects can be reversed by gene therapy for odontoblasts remains unknown. In this study, we compare the infection efficiencies of six commonly used adeno-associated virus (AAV) serotypes (AAV1, AAV5, AAV6, AAV8, AAV9, and AAVDJ) in cultured mouse odontoblast-like cells (OLCs). We show that AAV6 serotype infects OLCs with the highest efficiency among the six AAVs. Two cellular receptors, which are able to recognize AAV6, AAV receptor (AAVR), and epidermal growth factor receptor (EGFR), are strongly expressed in the odontoblast layer of mouse teeth. After local administration to mouse molars, AAV6 infects the odontoblast layer with high efficiency. Furthermore, AAV6-Mdm2 was successfully delivered to teeth and prevents the defects in odontoblast differentiation and dentin formation in Mdm2 conditional knockout mice (a mouse model of dentinogenesis imperfecta type Ⅲ). These results suggest that AAV6 can serve as a reliable and efficient vehicle for gene delivery to odontoblasts through local injection. In addition, human OLCs were also successfully infected by AAV6 with high efficiency, and both AAVR and EGFR are strongly expressed in the odontoblast layer of extracted human developing teeth. These findings suggest that AAV6-mediated gene therapy through local injection may be a promising treatment approach for hereditary dentin disorders in humans.


Asunto(s)
Dentina , Dentinogénesis Imperfecta , Ratones , Humanos , Animales , Dentina/metabolismo , Dentinogénesis Imperfecta/genética , Dentinogénesis Imperfecta/metabolismo , Proteínas de la Matriz Extracelular/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Ratones Noqueados , Diferenciación Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Terapia Genética
12.
J Genet Genomics ; 50(7): 497-510, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36809837

RESUMEN

Mouse dental papilla cells (mDPCs) are cranial neural crest-derived dental mesenchymal cells that give rise to dentin-secreting odontoblasts after the bell stage during odontogenesis. The odontoblastic differentiation of mDPCs is spatiotemporally regulated by transcription factors (TFs). Our previous work reveals that chromatin accessibility was correlated with the occupation of the basic leucine zipper TF family during odontoblastic differentiation. However, the detailed mechanism by which TFs regulate the initiation of odontoblastic differentiation remains elusive. Here, we report that phosphorylation of ATF2 (p-ATF2) is particularly increased during odontoblastic differentiation in vivo and in vitro. ATAC-seq and p-ATF2 CUT&Tag experiments further demonstrate a high correlation between p-ATF2 localization and increased chromatin accessibility of regions near mineralization-related genes. Knockdown of Atf2 inhibits the odontoblastic differentiation of mDPCs, while overexpression of p-ATF2 promotes odontoblastic differentiation. ATAC-seq after overexpression of p-ATF2 reveals that p-ATF2 increases the chromatin accessibility of regions adjacent to genes associated with matrix mineralization. Furthermore, we find that p-ATF2 physically interacts with and promotes H2BK12 acetylation. Taken together, our findings reveal a mechanism that p-ATF2 promotes odontoblastic differentiation at initiation via remodeling chromatin accessibility and emphasize the role of the phosphoswitch model of TFs in cell fate transitions.


Asunto(s)
Proteínas de la Matriz Extracelular , Odontoblastos , Animales , Ratones , Diferenciación Celular/genética , Cromatina/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Odontoblastos/metabolismo , Fosforilación
13.
Stem Cells Dev ; 32(9-10): 258-269, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36792961

RESUMEN

Tooth dentin is a crucial tooth structure. The biological process of odontoblast differentiation is essential for formation of normal dentin. Accumulation of reactive oxygen species (ROS) leads to oxidative stress, which can influence the differentiation of several cells. As a member of the importin-ß superfamily, importin 7 (IPO7) is essential for nucleocytoplasmic transport and plays an important role in the processes of odontoblast differentiation and oxidative stress. Nevertheless, the association between ROS, IPO7, and odontoblast differentiation in mouse dental papilla cells (mDPCs) and the underlying mechanisms remain to be elucidated. In this study, we confirmed that ROS suppressed odontoblastic differentiation of mDPCs as well as the expression and nucleocytoplasmic shuttle of IPO7 in cells, while overexpression of IPO7 can rescue these effects. ROS resulted in increased phosphorylation of p38 and cytoplasmic aggregation of phosphorylated p38 (p-p38), which was able to be reversed by overexpression of IPO7. p-p38 interacted with IPO7 in mDPCs without hydrogen peroxide (H2O2) treatment, but in the presence of H2O2, the interaction between p-p38 and IPO7 was significantly decreased. Inhibition of IPO7 increased the expression level and nuclear translocation of p53, which are mediated by cytoplasmic aggregation of p-p38. In conclusion, ROS inhibited odontoblastic differentiation of mDPCs, which is mediated by downregulation and damaged nucleocytoplasmic shuttle of IPO7.


Asunto(s)
Papila Dental , Peróxido de Hidrógeno , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Abajo/genética , Peróxido de Hidrógeno/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Odontoblastos , Diferenciación Celular/genética , Carioferinas/metabolismo , Carioferinas/farmacología , Pulpa Dental/metabolismo
14.
Int J Gen Med ; 16: 273-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718146

RESUMEN

Purpose: Rheumatoid arthritis (RA) is a systemic inflammatory disorder with unknown etiology. Oxidative stress and immune imbalance play a critical role in the pathogenesis of rheumatoid arthritis. Bilirubin has recently been recognized as a potent antioxidant as well as an immunomodulatory agent of physiological importance. The aim of this study was to explore whether increased bilirubin concentrations are correlated with good clinical prognosis of rheumatoid arthritis. Patients and Methods: In this cross-sectional study, we included 197 healthy individuals and 197 RA patients in the Affiliated Hospital of North Sichuan Medical College from October 2020 to February 2022. The latter were classified into three classes of disease activity according to DAS28-ESR: remission and low (DAS28-ESR<3.2), moderate (3.2≤DAS28-ESR≤5.1), and high (DAS28ESR>5.1). Based on the clinical and laboratory data, we evaluated the association of bilirubin levels with disease activity in RA using multivariable ordered logistic regression. Results: The levels of total bilirubin and total bilirubin/albumin ratio were significantly lower (P < 0.001; P < 0.001) in RA patients compared with healthy controls. In RA patients, Spearman's rank correlation analysis revealed that bilirubin and total bilirubin/albumin ratio were negatively correlated with disease activity and inflammatory marker (C-reactive protein, erythrocyte sedimentation rate, Interleukin-6). In multivariable ordered logistic regression, higher total bilirubin (OR=0.77, 95% CI: 0.67-0.89, p<0.001) independently predicted lower disease activity. Conclusion: Bilirubin levels remain associated with a reduction of disease activity, suggesting that bilirubin may be a protective factor for RA aggravation.

15.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36464487

RESUMEN

Different RNAs have distinct subcellular localizations. However, nucleotide features that determine these distinct distributions of lncRNAs and mRNAs have yet to be fully addressed. Here, we develop RNAlight, a machine learning model based on LightGBM, to identify nucleotide k-mers contributing to the subcellular localizations of mRNAs and lncRNAs. With the Tree SHAP algorithm, RNAlight extracts nucleotide features for cytoplasmic or nuclear localization of RNAs, indicating the sequence basis for distinct RNA subcellular localizations. By assembling k-mers to sequence features and subsequently mapping to known RBP-associated motifs, different types of sequence features and their associated RBPs were additionally uncovered for lncRNAs and mRNAs with distinct subcellular localizations. Finally, we extended RNAlight to precisely predict the subcellular localizations of other types of RNAs, including snRNAs, snoRNAs and different circular RNA transcripts, suggesting the generality of using RNAlight for RNA subcellular localization prediction.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Nucleótidos , Aprendizaje Automático , Algoritmos , ARN Mensajero/genética
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166636, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36584722

RESUMEN

The mandible is an important component of the craniofacial bones, whose development is regulated by complex molecular networks and involves the well-coordinated development of the bone, cartilage, and teeth. Previously, we demonstrated that Krüppel-like factor 4 (KLF4) promoted dentinogenesis and osteogenesis, but it was enigmatic whether Klf4 participated in the development of the mandible. In this study, the Sp7-Cre; Klf4f/+ mice exhibited underdeveloped mandibles and insufficient elongation of the mandibular incisor when compared with Klf4f/+ and Sp7-Cre mice. Moreover, morphological and molecular analysis showed that the alveolar bone mass was significantly decreased in KLF4 deficient mice, accompanied by reduced expression of osteoblast-related genes. Meanwhile, the KLF4 deficient mice had decreased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) and no significant change of osteoprotegerin (OPG) in the alveolar bone near the mandibular incisor. Simultaneously, the osteoclastogenesis in the alveolar bone of KLF4 deficient mice was attenuated, which was demonstrated by a diminished number of tartrate-resistant acid phosphatase positive (TRAP+), matrix metallopeptidase 9 positive (MMP9+), and cathepsin K positive (CTSK+) multinucleated osteoclasts, respectively. Collectively, our study suggested that Klf4 participated in mandibular development, and Klf4 in Sp7+ lineage affected osteogenesis directly and osteoclastogenesis indirectly.


Asunto(s)
Glicoproteínas , Incisivo , Ratones , Animales , Glicoproteínas/metabolismo , Incisivo/metabolismo , Fosfatasa Ácida , Haploinsuficiencia , Mandíbula/metabolismo , Factor de Transcripción Sp7
17.
Turk J Med Sci ; 52(4): 984-989, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36326421

RESUMEN

BACKGROUND: To measure the expression of 1α-hydroxylase (CYP27B1) and serum 25(OH)D concentration in systemic lupus erythematosus (SLE) and to investigate the role of CYP27B1 in SLE. METHODS: Seventy-seven SLE patients and 35 healthy controls (HCs) were enrolled from September 2017 to January 2020. The study design is cross-sectional. mRNA expression of CYP27B1 in peripheral blood mononuclear cells (PBMCs) was measured by reverse-transcription quantitative PCR, the protein level of CYP27B1 was quantified by western blotting, and the serum level of 25(OH) D was determined by an enzyme-linked immunosorbent assay. RESULTS: The mRNA expression of CYP27B1 in PBMCs was significantly lower in SLE patients than in HCs (p < 0.001), and the protein quantification confirmed that CYP27B1 expression was lower in SLE patients than in HCs (p = 0.001). Among SLE patients, the prevalence of lupus nephritis was higher in a subgroup with lower CYP27B1 mRNA expression than in a subgroup with normal CYP27B1 mRNA expression (41.07% vs. 14.28%, p = 0.028). The mRNA expression of CYP27B1 negatively correlated with the Systemic Lupus Erythematosus Disease Activity Index (r = -0.331, p = 0.003). Serum 25(OH)D concentration was lower in SLE patients than in HCs (37.64 ± 19.89 vs. 50.58 ± 12.74 ng/mL, mean ± SD, p = 0.003). DISCUSSION: The expression of CYP27B1 in PBMCs may be related to SLE pathogenesis, disease activity, and nephritis.


Asunto(s)
Lupus Eritematoso Sistémico , Vitamina D , Humanos , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Leucocitos Mononucleares , Estudios Transversales , Vitaminas , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Stem Cells ; 40(11): 1020-1030, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-35922041

RESUMEN

RUNX2, an important transcriptional factor for both odontoblastic and osteoblastic differentiation, is upregulated during osteoblastic differentiation, but downregulated during late odontoblastic differentiation. However, the specific mechanism of the different RUNX2 expression in bone and dentin remains largely unknown. Importin 7 (IPO7), a member of the karyopherin ß-superfamily, mediates nucleocytoplasmic transport of proteins. In this study, we found that IPO7 was increasingly expressed from pre-odontoblasts to mature odontoblasts. IPO7 expression was increased with odontoblastic differentiation of mouse dental papilla cells (mDPCs) and knockdown of IPO7-inhibited cell differentiation. While in MC3T3-E1 cells, IPO7 was decreased during osteoblastic differentiation and knockdown of IPO7-promoted cell differentiation. In mPDCs, IPO7 was able to bind with some odontoblastic transcription factors, and imported them into the nucleus, but not with RUNX2. Furthermore, IPO7 inhibited the total RUNX2 expression by promoting HDAC6 nuclear localization during odontoblastic differentiation. However, in MC3T3-E1 cells, IPO7 inhibited the nuclear distribution of RUNX2 but did not affect the total protein level of RUNX2. In conclusion, we found that IPO7 promotes odontoblastic differentiation and inhibits osteoblastic differentiation through regulating RUNX2 expression and translocation differently.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Carioferinas , Odontoblastos , Osteoblastos , Animales , Ratones , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Pulpa Dental/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Odontoblastos/citología , Factores de Transcripción/metabolismo , Carioferinas/metabolismo , Osteoblastos/citología
19.
Front Physiol ; 13: 923185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784864

RESUMEN

Dentinogenesis is a key process in tooth formation and is regulated by a series of pre- and post-transcriptional regulations. N6-methyl-adenosine (m6A), which is the most prevalent internal chemical modification that can be removed by the RNA demethylase AlkB homolog H5 (ALKBH5), has recently been reported to be involved in several biological processes. However, the exact function of ALKBH5-mediated m6A modification in tooth development remains unclear. Here, we showed that Alkbh5 was expressed in pre-odontoblasts, polarizing odontoblasts, and secretory odontoblasts. Alkbh5 overexpression in the mouse dental papilla cell line mDPC6T promoted odontoblastic differentiation. Conditional knockout of Alkbh5 in Dmp1-expressing odontoblasts led to a decrease in number of odontoblasts and increased pre-dentin formation. Mechanistically, RNA sequencing and m6A sequencing of Alkbh5-overexpressing mDPC6T cells revealed that Alkbh5 promoted odontoblast differentiation by prolonging the half-life of Runx2 transcripts in an m6A-dependent manner and by activating the phosphatidylinositol 3-kinase/protein kinase B pathway. Notably, the loss of Alkbh5 expression in odontoblasts impaired tertiary dentin formation in vivo. These results suggested that the RNA demethylase ALKBH5 plays a role in dentinogenesis.

20.
J Biol Chem ; 298(8): 102220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780838

RESUMEN

WW domain-containing E3 Ubiquitin-protein ligase 2 (WWP2) has been found to positively regulate odontoblastic differentiation by monoubiquitinating the transcription factor Kruppel-like factor 5 (KLF5) in a cell culture system. However, the in vivo role of WWP2 in mouse teeth remains unknown. To explore this, here we generated Wwp2 knockout (Wwp2 KO) mice. We found that molars in Wwp2 KO mice exhibited thinner dentin, widened predentin, and reduced numbers of dentinal tubules. In addition, expression of the odontoblast differentiation markers Dspp and Dmp1 was decreased in the odontoblast layers of Wwp2 KO mice. These findings demonstrate that WWP2 may facilitate odontoblast differentiation and dentinogenesis. Furthermore, we show for the first time that phosphatase and tensin homolog (PTEN), a tumor suppressor, is expressed in dental papilla cells and odontoblasts of mouse molars and acts as a negative regulator of odontoblastic differentiation. Further investigation indicated that PTEN is targeted by WWP2 for degradation during odontoblastic differentiation. We demonstrate PTEN physically interacts with and inhibits the transcriptional activity of KLF5 on Dspp and Dmp1. Finally, we found WWP2 was able to suppress the interaction between PTEN and KLF5, which diminished the inhibition effect of PTEN on KLF5. Taken together, this study confirms the essential role of WWP2 and the WWP2-PTEN-KLF5 signaling axis in odontoblast differentiation and dentinogenesis in vivo.


Asunto(s)
Dentinogénesis , Factores de Transcripción de Tipo Kruppel , Odontoblastos , Fosfohidrolasa PTEN , Ubiquitina-Proteína Ligasas , Animales , Diferenciación Celular , Dentina/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Odontoblastos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...