Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 260: 121980, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38909425

RESUMEN

Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl2-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation (p < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation (p < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus Cobetia (from 15.51 to 24.34 %) mirrored by the reduced Calothrix abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as Burkholderia having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.

2.
Environ Sci Technol ; 58(13): 5844-5855, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506747

RESUMEN

Lake sediments play a critical role in organic carbon (OC) conservation. However, the biogeochemical processes of the C cycle in lake ecosystems remain limitedly understood. In this study, Fe fractions and OC fractions, including total OC (TOC) and OC associated with iron oxides (TOCFeO), were measured for sediments from a eutrophic lake in China. The abundance and composition of bacterial communities encoding genes cbbL and cbbM were obtained by using high-throughput sequencing. We found that autochthonous algae with a low C/N ratio together with δ13C values predominantly contributed to the OC burial in sediments rather than terrigenous input. TOCFeO served as an important C sink deposited in the sediments. A significantly positive correlation (r = 0.92, p < 0.001) suggested the remarkable regulation of complexed FeO (Fep) on fixed TOC fractions, and the Fe redox shift triggered the loss of deposited OC. It should be noted that a significant correlation was not found between the absolute abundance of C-associating genera and TOC, as well as TOCFeO, and overlying water. Some rare genera, including Acidovora and Thiobacillus, served as keystone species and had a higher connected degree than the genera with high absolute abundance. These investigations synthetically concluded that the absolute abundance of functional genes did not dominate CO2 fixation into the sediments via photosynthesis catalyzed by the C-associating RuBisCO enzyme. That is, rare genera, together with high-abundance genera, control the C association and fixation in the sediments.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Sedimentos Geológicos/química , Ciclo del Carbono , Lagos/química , Lagos/microbiología , Bacterias/genética , China , Carbono
3.
PLoS One ; 19(1): e0296711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277406

RESUMEN

Soil organic carbon (SOC) contributes the most significant portion of carbon storage in the terrestrial ecosystem. The potential for variability in carbon losses from soil can lead to severe consequences such as climate change. While extensive studies have been conducted to characterize how land cover type, soil texture, and topography impact the distribution of SOC stocks across different ecosystems, little is known about in Karst Region. Here, we characterized SOC stocks with intensive sampling at the local scale (495 representative samples) via Random Forest Regression (RF) and Principal Component Analysis (PCA). Our findings revealed significant differences in SOC stock among land cover types, with croplands exhibiting the lowest SOC stocks, indicating that management practices could play a crucial role in SOC stocks. Conversely, there was little correlation between SOC stock and clay percentage, suggesting that soil texture was not a primary factor influencing SOC at a local scale. Further, Annual Precipitation was identified as the key driving factor for the dynamics of SOC stocks with the help of RF and PCA. A substantial SOC deficit was observed in most soils in this study, as evaluated by a SOC/clay ratio, indicating a significant potential in SOC sequestration with practical measures in the karst region. As such, future research focused on simulating SOC dynamics in the context of climate change should consider the controlling factors at a local scale and summarize them carefully during the up-scaling process.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Ecosistema , Arcilla , Secuestro de Carbono , China
4.
Water Res ; 245: 120661, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769418

RESUMEN

The reduction of exogenous emissions of phosphorus (P) is a crucial measure for resolving eutrophication in lakes. However, the input of terrigenous materials still potentially contributes to an increase of P load in lake systems. In this study, we examined the phosphate oxygen isotope (δ18OP) of various P fractions in soils and sediments in a small lake watershed, namely, Shijiuhu watershed. The high-resolution in-situ diffusive gradients in thin films (DGT) technology was also used to survey the dynamic processes of P diffusion from sediment particles to the water. The results demonstrated that lighter δ18OP values (16.2-19.5‰) for individual P fractions in lake sediments were detected compared to other land-use patterns, indicating the cumulative biological P recycling on anaerobic condition. Fe bound P (Fe-P) overall had heavier δ18OP values (17.3-24.8‰) than some of Ca bound P (Ca-P) and equilibrium values, suggesting that Fe-P conserved the parental isotope signatures from terrigenous source and could act as the ideal tracer for the lake sediments. The mixing effect of terrigenous detrital input and biological mineralization made the source identification uncertain by using Ca-P, which had a wider range of δ18OP values (13.0-26.6‰). Additionally, significantly positive correlation (r = 0.551-0.913, p<0.05) between soluble reactive P (SRP) and Fe2+ in interstitial water obtained using DGT measurement revealed the conspicuous release and desorption of solid Fe-P toward the water. High diffusion fluxes from the sediments toward the overlying water further demonstrated that the desorption of Fe-P in the soil-originated sediments toward the solution conspicuously facilitated the accumulation of SRP in lake water. The first-time application of δ18OP isotope combined with in-situ DGT techniques certified that it's feasible for the contribution confirmation from terrigenous to lacustrine environments, and presented the direct evidence for management strategy making about P control and eutrophication restoration at the catchment scale of lakes.

5.
Environ Res ; 238(Pt 2): 117247, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769833

RESUMEN

Freshwater lakes undergo substantial alterations of the phosphorus (P) cycle in the water-sediment ecosystem due to thermal change. The impact process of seasonal fluctuation on P cycling in sediments has been scarcely investigated. P forms in sediments from a freshwater lake in China were analyzed using sequential extraction technique. The vertical distribution of soluble reactive P (SRP), Fe2+, and S2- in the interstitial water was measured using diffusion gradient technique (DGT). Fick's Law and DIFS model were used to obtain the diffusion fluxes of SRP and the kinetic parameters in the water-sediment system. The results showed that total P (TP) concentrations in the solid sediments varied from 207.5, 266.6 and 130.3 mg/kg to 614.7, 1053.1, and 687.6 mg/kg in winter, spring, and summer, respectively. The concentrations of individual P forms in spring were higher than those in other seasons, with Fe-bound P (Fe-P) concentration being the highest across all seasons. Notably, significant variations of SRP concentrations were found in the interstitial water between sedimentary depths of approximately 2 cm and 6 cm, particularly in the summer. Furthermore, higher diffusion fluxes of SRP through the interface were found in summer. A stable anaerobic environment failed to develop in spring with high water level, preventing the desorption of solid Fe-P and diffusion of Fe2+ into the water due to the afflux and deposition of P-containing particulate into deeper sediment layers along with organic material. Under extreme high-temperature in summer, decreased rainfall and rising temperatures boosted the activity of aquatic organisms in the water, thereby reducing P fixation by sediments and leading to P release. This process increased the risk of P excess and potential eutrophication in the water. Generally, clarifying the resupplying processes of endogenous P in sediment systems experiencing seasonal variations is critical for eutrophication management of lakes.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Estaciones del Año , Agua , Fósforo/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Eutrofización , China
6.
Water Res ; 240: 120107, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244018

RESUMEN

Excessive phosphorus (P) enrichment is the critical cause of eutrophication in the lake water. Organic P (Po) mineralization processes induced by alkaline phosphatase (APase) regulated by phoD-encoding microorganisms in the lake ecosystems was still ambiguous due to the transseasonal shift of water temperatures and depths. Different P pools in the water and sediments of Shijiuhu Lake at varied seasons were measured using chemical extraction methods and solution 31P NMR. The alkaline phosphatase activity (APA) in the sediments were assessed together with enzyme kinetic parameters. The abundances and compositions of microbial communities encoding functional gene phoD were also obtained using high-throughput sequencing. The results showed that Po concentrations remarkably increased from winter toward spring when having higher water depths due to the terrigenous input and biomass deposition. Noteworthy elevation in the PO43- concentration was observed in the interstitial water during the spring, particularly at around 5 cm sediment depth with value reaching as high as 0.43 mg/L. The degradation and mineralization of momoesters and diesters with higher concentrations in the sediments of spring aggravated the PO43- load in the interstitial water. Higher APA reaching 91.6 µg/(g·h) in spring was responsible for the mineralization of Po. Remarkably upwards increasing of absolute abundance of phoD-encoding gene in spring reaching up to 2.6 times of that in winter facilitated the generation of APA in spring. Cobetia and Calothrix followed by Aquabacterium and Mitsuaria were the most abundant phoD-encoding genera with relative abundance > 4%. Weakly positive correlation between dominant bacterial genera and APA and P fractions suggested that low-abundance genera was also involved in the APA generation and Po hydrolysis. These results indicate that spring with high water temperature and depth facilitate the mineralization of Po in the sediment and increase of labile PO43- load in the water, further provide valuable information for the management of eutrophic lakes.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Fosfatasa Alcalina , Lagos/química , Ecosistema , Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , China , Eutrofización
7.
J Environ Manage ; 341: 118050, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141713

RESUMEN

Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.


Asunto(s)
Compuestos de Amonio , Nitratos , Contaminantes Químicos del Agua , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , Lagos/química , Nitratos/análisis , Nitrógeno , Compuestos Orgánicos , Oxidación-Reducción , Estaciones del Año , Agua
8.
J Environ Manage ; 340: 118016, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121007

RESUMEN

Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Fósforo/análisis , Ecosistema , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Suelo , Agua/análisis , China , Contaminantes Químicos del Agua/análisis , Eutrofización
9.
Environ Res ; 223: 115281, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36639014

RESUMEN

Microbial communities play a critical role in aquaculture ecosystems. To identify the influence of sediment nutrient levels on microbial communities, sediment and water samples were collected from Chinese mitten crab Eriocheir sinensis culture ponds with different nutrient enrichment levels. Relevant physicochemical properties were measured, and 16 S rRNA gene sequencing was applied to identify relevant bacterial communities in the sediments. The results showed that the diversity and composition of microbial communities in sediments with different levels of nutrient enrichment varied considerably. Proteobacteria was the most abundant phylum in all samples, followed by Bacteroidetes, and Desulfobacterota with relative abundances of 23.5-40.9%, 9.8-21.5%, and 9.6-18.1%, respectively. Notably, total nitrogen (TN), organic matter (OM), and pH were important factors driving sediment bacterial community aggregation, the TN concentration explaining 61.5% of the microbial community variation. This study highlights that long-term culture activities alter the degree of sediment nutrient enrichment, which in turn affects microbial community composition and may ultimately have an impact on culture efficiency.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Bacteroidetes/genética , ARN Ribosómico 16S/genética , Acuicultura , Sedimentos Geológicos
10.
Ecotoxicol Environ Saf ; 242: 113853, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809396

RESUMEN

Various indices based on metal chemical data are used to evaluate pollution and ecological risk, but the consistency of the assessment results is usually unsatisfactory, and it is unclear if the ecological risk from sediment metals is accurately represented in in situ zoobenthos. Herein, the pollution and ecological risk associated with As, Cd, Cr, Cu, Ni, Pb and Zn in the sediments of two adjacent lakes (Datun (DT) and Changqiao (CQ)) were comprehensively evaluated by integrating metal concentrations, chemical forms and bioaccumulation in Bellamya aeruginosa (B. aeruginosa). The metal concentrations and chemical compositions varied widely in the sediments. Over 50% of the Cd, Pb and Zn in the sediments was present in bioavailable forms, followed by 28% of Cu and less than 25% of As, Cr and Ni. According to the enrichment factor (EF) and concentration enrichment ratio (CER) assessments, Cr and Ni were natural in origin, while the other metals were at minor to extremely high pollution levels, with average EFs of 1.5-77.6 and CERs of 1.1-113.4. The pollution levels for Cd, Cu and Pb from the EF and CER assessments were similar, while those for As and Zn were higher according to CER than EF (p = 0.05), likely due to the baseline underestimation associated with the potential diagenetic remobilization of bioavailable metals. The ecological risk index (Er), sediment quality guidelines (SQGs) and risk assessment code (RAC) showed a high eco-risk for Cd, while no similar risk was found for the other metals. By integrating risk indices with the chemical forms and pollution levels of metals, we deduced high eco-risks for As and Pb and moderate eco-risks for Cu and Zn in DT Lake and moderate eco-risks for As, Pb and Zn in CQ Lake. The other metals in the sediments of the two lakes presented low eco-risks. No significant positive correlations (p = 0.05) between metal accumulation in B. aeruginosa and the indices of pollution and eco-risk were observed except for the case of As, implying that measuring the metal concentrations in B. aeruginosa would not accurately characterize the metal pollution and ecological risk of sediments.


Asunto(s)
Gastrópodos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Bioacumulación , Cadmio , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Plomo , Metales Pesados/análisis , Pseudomonas aeruginosa , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 305: 135382, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35718038

RESUMEN

Phosphorus (P) is normally considered as the limited nutrient for shallow freshwater lakes and can potentially trigger eutrophication on account of high concentrations. Due to the various transportation and transformation processes, P source apportionment and management in lake ecosystems have become more and more difficult. Combining with sequential extraction of P fractions and mineralogical analysis, the isotopic compositions of oxygen in phosphate (δ18OP) of resin-extractable P from the different samples including soil, estuary sediments, pond sediments, and lake sediments in the Shijiuhu Lake catchment, China, were investigated. The results showed that δ18OP values ranged from +15.23 to +21.92‰ in agricultural soil, +16.53 to +24.10‰ in estuary sediments, +18.90 to +20.90‰ in pond sediments, and +17.42 to +19.70‰ in lake sediments. Isotopic signatures indicated that chemical fertilizers with heavier δ18OP values (+20.70 to +26.50‰) were the predominant contributors of P in the soil. The river transportation together with Fe/Al-P desorption on anaerobic condition simultaneously stimulated the enrichment of P in the lake sediments, even though the biotic activity regulated the isotope values moving toward the equilibrium. Eroded soil was the important source of P in lake and pond sediments via drainage and runoff, and conserved the source isotope signal in the samples. Stronger biotic activity in the aquatic environments dragged δ18OP values toward the equilibrium. However, conspicuous off-equilibrium isotope signature suggested the terrestrial sources in the aquatic ecosystems. The calculation of two end-member linear mixing models suggested that soils also predominantly controlled the P occurrence in the lake sediments with contribution higher than 80%, indicating that decreasing inputs from the agricultural activities is important in P reduction on catchment scale. Generally, δ18OP from different sources can provide indirect and important evidences for the identification and management of P sources in the lake catchment.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Isótopos de Oxígeno/análisis , Fosfatos/análisis , Fósforo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 303(Pt 1): 134664, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35460675

RESUMEN

Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.


Asunto(s)
Compuestos de Amonio , Amoníaco , Compuestos de Amonio/metabolismo , Desnitrificación , Ecosistema , Compuestos Férricos , Sedimentos Geológicos , Lagos , Nitratos/análisis , Nitrógeno , Óxidos de Nitrógeno , Compuestos Orgánicos , Fósforo , Agua/análisis
13.
J Environ Sci (China) ; 118: 147-157, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35305764

RESUMEN

Different N and P fractions in microcosm incubation experiment was measured using high-resolution in-situ Peeper and DGT techniques combining with sequential extraction procedure. The results showed the synchronous desorption and release of PO43-, S2- and Fe2+ from the solid soil-originated sediment. This trend indicated that the significant reduction of Fe-P and SO42- occurred in the pore water during the inundation. The concentrations of PO43- in the overlying water and pore water increased to more than 0.1 and 0.2 mg/L at the beginning of the incubation experiment. Decreased NO3-concentrations from more than 1.5 mg/L to less than 0.5 mg/L combining with increasing NH4+ concentrations from less than 1 mg/L to more than 5 mg/L suggested the remarkable NO3- reduction via dissimilatory nitrate reduction to ammonia (DNRA) pathway over time. High NH4+ concentrations in the pore water aggravated the release of Fe2+ through reduction of Fe(III)-P as electric acceptors under anaerobic conditions. This process further stimulated the remarkable releasing of labile PO43- from the solid phase to the solution and potential diffusion into overlying water. Additionally, high S2- concentration at deeper layer indicated the reduction and releasing of S2- from oxidation states, which can stimulated the NO3- reduction and the accumulation of NH4+ in the pore water. This process can also provoke the reduction of Fe-P as electric acceptors following the release of labile PO43- into pore water. Generally, inundation potentially facilitate the desorption of labile P and attention should be paid during the reclaiming lake from polder.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Sedimentos Geológicos , Hierro/análisis , Lagos , Nitrógeno , Suelo , Contaminantes Químicos del Agua/análisis
14.
J Environ Sci (China) ; 109: 181-192, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607667

RESUMEN

Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems, but the lack of test methods hinders the understanding of removal mechanism and application. In this study, we used the novel technologies combined of Diffusive gradients in thin films (DGT), Planar optode (PO), and Non-invasive micro-test technology (NMT) to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time. Results of the high-resolution in situ measurement showed that labile P(LPDGT) fluxes at the surficial sediment significantly decreased from approximate 120, 140, and 200 pg/ (cm2•sec) via 30 days incubation period to 17, 40, and 56 pg/(cm2•sec) via that of 15 days. Obvious synchronous increase of LPDGT was not detected in overlying water, suggesting the intense assimilation of dissolve reactive P via root over time. PO measurement indicated that O2 concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100% saturation along with the root stretch downwards. NMT detection of roots showed the obvious O2 inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec) from surroundings via aerenchyma on different treatment conditions. Different from previous reports, gradually saturating O2 concentrations around the rhizosphere was principally driven by O2 penetration through interspace attributing to root stretch downward rather than root O2 leakage. Increased O2 concentrations in deep sediment over time finally induced the oxidization of labile Fe(II) into Fe(III) bound P and local P immobilization.


Asunto(s)
Potamogetonaceae , Contaminantes Químicos del Agua , Ecosistema , Compuestos Férricos , Sedimentos Geológicos , Fósforo , Rizosfera , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 792: 148353, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465044

RESUMEN

Eutrophication in coastal water has compromised ecosystem services. Identification of phosphorus (P) sources and their load contributions are required for the development of effective nutrient management plans. In this research, multi-isotope proxies were applied to track P sources and evaluate their relative contributions in Love Creek, a coastal estuary in Delaware. The isotope values of carbon (ca. -22‰), nitrogen (ca.+6‰), and phosphate oxygen (ca.+18‰) of agricultural soils under different agricultural practices are generally similar even though their concentrations are distinctly different from forest soils (δ13C: ca. -27‰; δ13N: ca.+2‰; δ18OP: ca.+22‰). Comparison of these parameters among potential land sources (agricultural soils, forest soils, septic wastes, and plant debris) and sink (colloids in water) revealed that the plant debris and soils from forest sources are likely dominant sources of P in freshwater sites. The contribution of terrestrial P sources gradually decreased along the salinity gradient and agricultural soil sources gradually dominanted in the saline water portion of the creek. The variations of P loads due to weather-related discharge, changing land use and activities, and seasons were high and reflected the limitation of accurate estimation of sources. Overall, these results provide improved insights into potential sources and biogeochemical processes in the estuary, which are expected to be useful for water quality monitoring programs.


Asunto(s)
Estuarios , Fósforo , Ecosistema , Monitoreo del Ambiente , Isótopos de Nitrógeno/análisis , Fósforo/análisis , Salinidad
16.
Water Res ; 200: 117258, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34058482

RESUMEN

Sequential extraction and in-situ diffusive gradients in thin films (DGT) techniques were used to determine phosphorus (P) fractions and high-resolution 2D fluxes of labile PDGT, Fe2+DGT, and S2-DGT in sediment systems. The diffusion fluxes were subsequently calculated for different scenarios. Dynamic diffusion parameters between solid sediment and solution were also fitted using the DIFS (DGT-induced fluxes in sediments) model. The results suggested that Fe-bound P (Fe-P) was the dominant pool which contributed to the resupply potential of P in the water-sediment continuum. Significant upward decreases of labile PDGT, Fe2+DGT, and S2-DGT fluxes were detected in pristine and incubated microcosms. This dominance indicated the more obvious immobilization of labile P via oxidation of both Fe2+ and S2- in oxidic conditions. Additionally, these labile analytes in the microcosms obviously decreased after a 30-day incubation period, indicating that water-level fluctuations can significantly regulate adsorption-desorption processes of the P bound to Fe-containing minerals within a short time. Higher concentrations of labile PDGT, Fe2+DGT, and S2-DGT were measured at the shallow lake region where more drastic water-level variation occurred. This demonstrates that frequent adsorption-desorption of phosphate from the sediment particles to the aqueous solution can result in looser binding on the solid sediment surface and easier desorption in aerobic conditions via the regulation of water levels. Higher R values fitted with DIFS model suggested that more significant desorption and replenishment effect of labile P to the aqueous solution would occur in lake regions with more dramatic water-level variations. Finally, a significant positive correlation between S2-DGT and Fe2+DGT in the sediment indicated that the S2- oxidization under the conditions of low water-level can trigger the reduction of Fe(III) and subsequent release of active P. In general, speaking, frequent water-level fluctuations in the lake over time facilitated the formation and retention of the Fe(II) phase in the sediment, and desorption of Fe coupled P into the aqueous solution when the water level was high.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Difusión , Monitoreo del Ambiente , Compuestos Férricos , Sedimentos Geológicos , Cinética , Lagos , Fósforo/análisis , Agua , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 741: 140418, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886994

RESUMEN

Different fractions and variations of Mn, Co, Ni, Cu, Cd, Pb, Zn, and Fe in sediment via oxic and anaerobic treatments were investigated using BCR sequential extraction methods, DGT technique, and DIFS model. The results indicated that reducible fraction was the considerable pool apart from residual fraction, suggesting the high desorption potential of heavy metals. The high-resolution DGT measurement indicated that CDGT significantly rose after anaerobic condition and characterized by the relative high R value. Significantly increasing positive fluxes varying from 0.64 to 339.4 µg cm-2 s-1 except Ni suggested that apparent diffusion upward occurred over time from the sediment to the overlying water on anaerobic episode. High proportion of reducible Fe fraction and concurrent reduction of Fe(III) to Fe(II) during anaerobic condition were responsible for the increase of labile metals. The diffusion kinetic parameters including the equilibrium distribution coefficient (Kd), response time (Tc), and rate constant (k1 and k-1) were obtained using DIFS model. These parameters confirmed the partially sustained resupply capacity of heavy metals from solid sediment particle to pore water because of the considerable reducible fractions. Additionally, planar optode (PO) imaging approach demonstrated that low pH accompanied with decreasing dissolved oxygen (DO) concentration on anaerobic condition enhanced the release of labile metal fraction. Generally, anoxia facilitated the reduction of reducible fraction of heavy metals and further strengthened the desorption, resupply and diffusion in the aquatic ecosystems.

18.
Environ Pollut ; 263(Pt A): 114518, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32283466

RESUMEN

Potential toxic metal(loid)s (PTMs) in road dust are a major concern in relation to urban environmental quality. Identifying pollution hotspots and sources of PTMs is an essential prerequisite for pollution control and management. Herein, the concentrations, pollution and potential health risks of 8 PTMs (As, Cd, Co, Cu, Hg, Mo, Pb and Zn) in road dust from the highly urbanized areas of Nanjing were studied. Spatial occurrences and sources of PTMs were explored using geostatistics, principal component analysis (PCA) and local Moran's index. The contamination factor (CF) results showed that Co was mainly natural in origin, while the other PTMs were polluted, with average CFs ranging from 1.4 to 11.0 as follows: Hg > Mo > Cd > Cu > Pb > Zn > As, indicating moderate to very high contamination. Except for Co and Hg, the other PTMs were heavily loaded on PC1, which explained 44.72% of the total variance. Combining the statistical results and distributions of potential sources, we deduced that industrial emissions dominated the spatial patterns of all polluted PTMs in road dust, which showed high levels in the northern parts of the study region and generally decreasing levels southwards. Moreover, Pb and Zn in the south-central area and Cd in the north-central area displayed hotspots, with maximum CFs of 5.5 (Pb), 4.2 (Zn) and 16.2 (Cd), which were related to additional automotive and railway braking emissions, respectively. The resuspension of legacy pesticides in soil is likely responsible for the As pollution hotspot in the southwestern part. Despite the high anthropogenic contributions (27% for As and 68-88% for the other metals) to the PTMs in road dust, their noncarcinogenic and carcinogenic health risks were rarely found for children and adults based on the values of the hazard index and carcinogenic risk index. However, attention still should be paid to the pollution hotspots in the northern region.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adulto , Niño , China , Ciudades , Polvo/análisis , Monitoreo del Ambiente , Humanos , Medición de Riesgo
19.
Sci Total Environ ; 706: 136040, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31864994

RESUMEN

Potential release of phosphorus (P) bound to iron (Fe) is critical because of the aggravating effects on P load in aquatic ecosystems. However, the process is largely unknown due to the absence of in-situ high-resolution evidence. Dissolved oxygen (DO), ferrous ion (Fe2+), and dissolved reactive phosphate (DRP) in interstitial water of sediment columns from a eutrophic shallow lake were measured using the novel colorimetric planar optode imaging method and ZrO-Chelex DGT technology during controlled experimental episodes. The solid Fe and P fractions in sediments were also simultaneously evaluated by employing sequential extraction procedure and spectra scanning analysis including SEM-EDS and 57Fe-Mössbauer spectroscopy. The results demonstrated that the DO penetration depths were accordingly regulated with time, the depths depended on the oxygen supply patterns, and oxygen depletion occurred at anaerobic intervals. Considerable increases of concentrations and diffusion of Fe2+ and DRP in interstitial water upward from the deep layer into the overlying water were mirrored by decreased concentrations of solid Fe bound P and mineral phase Fe(II) during an anaerobic episode. This confirmed that the re-dissolution of solid Fe bound P pools is the most important source of labile P, and aggravates the P budget in lake water via anaerobic intervals. The reduction-precipitation mechanism of Fe bound P during different oxidation scenarios indicated that the Fe bound P in sediments can act as intermediates between Po and Ca bound P, and result in the permanent burying of authigenic Ca bound P. Significantly positive correlations (R2 ≥ 0.7783, n = 74) between labile Fe2+ and DRP on both redox conditions also provided explicit evidence for the critical role of redox controlling Fe in labile P cycling at the lacustrine sediment-water interface. These findings provide improved insight for potential controlling effort of Fe coupled P to labile P depending on the oxygen supply in shallow-water hypereutrophic lakes.

20.
Environ Pollut ; 257: 113500, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31733975

RESUMEN

High phosphorus (P) load and consequent algal bloom are critical issues because of their harmful effects to aquatic ecosystems. The organic phosphorus (Po) cycling and hydrolyzation pathway in the sediments of a hypereutrophic lake area with high algae biomass were investigated using stable isotopes (δ13C and δ15N) along with C/N ratios, a sequential extraction procedure, 31P NMR spectrum, and alkaline phosphatase activity (APA) was measured simultaneously. C/N ratios lower than 10 combined with lighter δ13C (-23.5 to -25.2‰) and δ15N values (3.7-9.5‰) indicated that endogenous algal debris contributed to the predominant proportions of P-containing organic matter in the sediments. Sequential extraction results showed that Po fractions decreased as nonlabile Po > moderately labile Po > biomass-Po. Decreasing humic-associated Po (HA-Po) in sediments downward suggested the degradation of high-molecular-weight Po compounds on the geological time scale to low-molecular-weight Po including fulvic-associated Po (FA-Po), which is an important source of labile Po in the sediment. An analysis of the solution 31P NMR spectrum analysis showed that important Po compound groups decreased in the order of orthophosphate monoesters > DNA-Po > phospholipids. The significant correlation indicated that orthophosphate monoesters were the predominant components of HA-Po. Rapid hydrolysis of labile orthophosphate diesters further facilitated the accumulation of orthophosphate monoesters in the sediments. Additionally, the simultaneously upward increasing trend demonstrated that APA accelerated the mineralization of Po into dissolved reactive phosphorus (DRP), which might feed back to eutrophication in algae-dominant lakes. The significantly low half-life time (T1/2) for important Po compound groups indicated faster metabolism processes, including hydrolysis and mineralization, in hypereutrophic lakes with high algae biomass. These findings provided improved insights for better understanding of the origin and cycling processes as well as management of Po in hypereutrophic lakes.


Asunto(s)
Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Biomasa , China , Ecosistema , Eutrofización , Sedimentos Geológicos/química , Hidrólisis , Lagos/química , Espectroscopía de Resonancia Magnética/métodos , Fosfatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...