Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(6): 2895-2905, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38404190

RESUMEN

Anxiety- and depression-like behaviors are commonly observed clinical features of depression and many other mental disorders. Recent evidence has revealed the crucial role of the microbiota-gut-brain axis in the bidirectional communication between the gastrointestinal tract and the central nervous system. Supplementation with psychobiotics may provide a novel approach for the adjunctive treatment of mental disorders by regulating the intestinal microecology. We isolated and identified a novel probiotic, Lactiplantibacillus plantarum D-9 (D-9), from traditional Chinese fermented foods in our previous work, which exhibited a high yield of gamma-aminobutyric acid (GABA). Herein, it was proved that the oral administration of D-9 could alleviate the depression- and anxiety-like behaviors of Chronic Unpredicted Mild Stress (CUMS) mice, and show non-toxicity or side-effects in the mice. Physiological and biochemical analyses demonstrated that D-9 regulated tryptophan metabolism, the HPA-axis and inflammation in CUMS mice. Moreover, D-9 modulated the structure and composition of the gut microbiota, leading to an increase in the relative abundance of Ligilactobacillus murinus and Lactobacillus johnsonii, and a decrease in the levels of Kineothrix alysoides and Helicobacter bilis compared to those in CUMS mice. Our work demonstrates that D-9 alleviated anxiety- and depression-like disorders in CUMS mice by modulating tryptophan metabolism and the gut microbiota. These findings provide an innovative strategy for the intervention and treatment of depressive disorders.


Asunto(s)
Microbioma Gastrointestinal , Fármacos Neuroprotectores , Humanos , Animales , Ratones , Triptófano , Depresión/tratamiento farmacológico , Ansiedad/tratamiento farmacológico
3.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439626

RESUMEN

The small current detection circuit is the core component of the accurate detection of the nanopore sensor. In this paper, a compact, low-noise, and high-speed trans-impedance amplifier is built for the nanopore detection system. The amplifier consists of two amplification stages. The first stage performs low-noise trans-impedance amplification by using ADA4530-1, which is a high-performance FET operational amplifier, and a high-ohm feedback resistor of 1 GΩ. The high pass shelf filter in the second stage recovers the higher frequency above the 3 dB cutoff in the first stage to extend the maximum bandwidth up to 50 kHz. The amplifier shows a low noise below sub-2 pA rms when tuned to have a bandwidth of around 5 kHz. It also guarantees a stable frequency response in the nanopore sensor.


Asunto(s)
Nanoporos , Impedancia Eléctrica
4.
Nano Lett ; 22(5): 2147-2154, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35041434

RESUMEN

To be considered as a promising candidate for mimicking biological nanochannels, carbon nanotubes (CNTs) have been used to explore the mass transport phenomena in recent years. In this study, the single nucleotide transport phenomena are comparatively studied using individual CNTs with a length of ∼15 µm and diameters ranging from 1.5 to 2.5 nm. In the case of CNTs with a diameter of 1.57-1.98 nm, the current traces of nucleotide transport are independent with the metallicity of CNTs and consist of single peak current pulses, whereas extraordinary stepwise current signals are observed in CNT with a diameter of 2.33 nm. It suggests that there is only one molecule in the nanochannel at a time until the diameter of CNT increases to 2.33 nm. Furthermore, it also demonstrates that the single nucleotides can be identified statistically according to their current pulses, indicating the potential application of CNT-based sensors for nucleotides identification.


Asunto(s)
Nanotubos de Carbono , Nucleótidos
5.
Rev Sci Instrum ; 91(9): 093203, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33003785

RESUMEN

The dielectric breakdown used to fabricate solid-state nanopores has separated the device from capital-intensive industries and has been widely adopted by various research teams, but there are still problems with low production efficiency and uncertain location. In this work, based on the transient breakdown phenomenon of nanofilms, a new type of dielectric breakdown apparatus for nanopore fabrication is reported. It integrates both nano-manipulation technology and dielectric breakdown nanopore fabrication technology. The nanometer distance detection method and circuit are introduced in detail. The generation principle and procedures of the transient high electric field are explained step by step. The characterization of the nanopores shows that this apparatus can fabricate sub-2 nm nanopores at a pre-located position. Besides, the nanopore diameter can be easily adjusted by setting the transient high electric field value.

6.
Nanoscale ; 12(38): 19711-19718, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-32966507

RESUMEN

Immunoglobulins can bind to an unlimited array of foreign antigens presented to the immune system. Among those isotypes, IgG and IgM play crucial roles in initial immune defense associated with innate immunity factors. Hence, the determination of IgG and IgM deficiencies or varying concentrations is widely used as a diagnostic indicator for immune deficiency disorders. Herein, we report a reduction chemistry-assisted nanopore method for IgG and IgM determination. TCEP (tris(2-carboxyethyl)phosphine) was used to cleave Ig proteins in fragments by means of disulfide bond reduction under different experimental conditions. This strategy enabled the observation of distinguishable current signals afforded by separated polypeptide fragments in an αHL nanopore. Together with molecular dynamics (MD) simulation results, highly effective electrostatic potentials and H-bonds, the dominant factors for these current signals, facilitated the capture of Ig fragments in an α-HL nanopore. More importantly, the signature signals were applicable for differentiating between IgG and IgM in blood serum without any problems of protein adsorption and clogging in the nanopore sensing. Furthermore, with comparative sensing sensitivity and selectivity, it is concluded that our method is a label-free single-molecule approach to measuring disease states that present as a result of the absence or over presence of immunoglobulin isotypes.


Asunto(s)
Isotipos de Inmunoglobulinas , Nanoporos , Inmunoglobulinas , Péptidos
7.
ACS Appl Bio Mater ; 3(9): 6368-6375, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021767

RESUMEN

The fabrication of nanopores through a dielectric breakdown method, achieved by simple, low-cost desktop setups, has promoted the research of solid-state nanopore sensing. This paper reports a method for fabricating nanopores. This method uses transient high electric field controlled breakdown (THCBD) to form electric-field-dependent nanopores with different diameters in the order of milliseconds. By manipulating a micropipette with a high electric field to establish the meniscus contact with the SiNx membrane, nanopores can be formed through an "auto-brake" fabrication process. Compared with the traditional dielectric breakdown, THCBD can greatly shorten the breakdown time and form pores of different sizes under higher electric fields without causing additional damage to the SiNx membrane. The nanopores formed by this method can be successfully used to detect two types of RNA molecules. One is transfer RNA from yeast extract and the other is a synthetic RNA oligonucleotide fragment (rArArArArArArArArArArArA).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...