Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767458

RESUMEN

In nature, chirality transfer refines biomolecules across all size scales, bestowing them with a myriad of sophisticated functions. Despite recent advances in replicating chirality transfer with biotic or abiotic building blocks, a molecular understanding of the underlying mechanism of chirality transfer remains a daunting challenge. In this paper, the coassembly of two types of glycopeptide molecules differing in capability of forming intermolecular hydrogen bonds enabled the involvement of discontinuous hydrogen bond, which allowed for a nanoscale chirality transfer from glycopeptide molecules to chiral micelles, yet inhibited the micrometer scale chirality transfer toward helix formation, leading to an achiral transfer from chiral micelles to planar monolayer. Upon stacking the monolayer into a bilayer, the nonsuperimposable front and back faces of the chiral micelles involved in the monolayer ribbons lead to the opposite rotation of two layers toward increasing the continuity of H-bonds. The resultant continuity triggered the symmetry breaking of stacked bilayers and thus reactivated the micrometer-scale chirality transfer toward the final helix. This work delineates a promising step toward a better understanding and replicating the naturally occurring chirality transfer events and will be instructive to future chiral material design.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38595048

RESUMEN

Tuning the charge transfer processes through a built-in electric field is an effective way to accelerate the dynamics of electro- and photocatalytic reactions. However, the coupling of the built-in electric field of p-n heterojunctions and the microstrain-induced polarization on the impact of piezocatalysis has not been fully explored. Herein, we demonstrate the role of the built-in electric field of p-type BiOI/n-type BiVO4 heterojunctions in enhancing their piezocatalytic behaviors. The highly crystalline p-n heterojunction is synthesized by using a coprecipitation method under ambient aqueous conditions. Under ultrasonic irradiation in water exposed to air, the p-n heterojunctions exhibit significantly higher production rates of reactive species (·OH, ·O2-, and 1O2) as compared to isolated BiVO4 and BiOI. Also, the piezocatalytic rate of H2O2 production with the BiOI/BiVO4 heterojunction reaches 480 µmol g-1 h-1, which is 1.6- and 12-fold higher than those of BiVO4 and BiOI, respectively. Furthermore, the p-n heterojunction maintains a highly stable H2O2 production rate under ultrasonic irradiation for up to 5 h. The results from the experiments and equation-driven simulations of the strain and piezoelectric potential distributions indicate that the piezocatalytic reactivity of the p-n heterojunction resulted from the polarization intensity induced by periodic ultrasound, which is enhanced by the built-in electric field of the p-n heterojunctions. This study provides new insights into the design of piezocatalysts and opens up new prospects for applications in medicine, environmental remediation, and sonochemical sensors.

3.
Adv Fiber Mater ; 6(1): 252-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495973

RESUMEN

Given the abundant solar light available on our planet, it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner. In this study, we present the fabrication of a photothermally active, biodegradable composite cloth composed of titanium carbide MXene and cellulose, achieved through an electrospinning method. This composite cloth exhibits favorable attributes, including chemical stability, mechanical performance, structural flexibility, and wettability. Notably, our 0.1-mm-thick composite cloth (RC/MXene IV) raises the temperature of simulated skin by 5.6 °C when compared to a commercially available cotton cloth, which is five times thicker under identical ambient conditions. Remarkably, the composite cloth (RC/MXene V) demonstrates heightened solar light capture efficiency (87.7%) when in a wet state instead of a dry state. Consequently, this cloth functions exceptionally well as a high-performance steam generator, boasting a superior water evaporation rate of 1.34 kg m-2 h-1 under one-sun irradiation (equivalent to 1000 W m-2). Moreover, it maintains its performance excellence in solar desalination processes. The multifunctionality of these cloths opens doors to a diverse array of outdoor applications, including solar-driven water evaporation and personal heating, thereby enriching the scope of integrated functionalities for textiles. Supplementary Information: The online version contains supplementary material available at 10.1007/s42765-023-00345-w.

4.
Cancer Med ; 13(4): e6995, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38457199

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV-posDLBCL) is an aggressive B-cell lymphoma that often presents similar morphological and immune phenotype features to that of EBV-negative DLBCL (EBV-negDLBCL). AIMS AND METHODS: To better understand their difference in genomic landscape, we performed whole-exome sequencing (WES) of EBV-posDLBCL and EBV-negDLBCL. RESULTS: This analysis revealed a new mutational signature 17 (unknown) and signature 29 (smoking) in EBV-posDLBCL as well as a specific mutational signature 24 (associated with aflatoxin) in EBV-negDLBCL. Compared with EBV-negDLBCL, more somatic copy number alterations (CNAs) and deletions were detected in EBV-posDLBCL (p = 0.01). The most frequent CNAs specifically detected in EBV-posDLBCL were gains at 9p24.1 (PDL1 and JAK2), 8q22.2-q24.23 (DEPTOR and MYC), and 7q31.31-q32.2 (MET), which were validated in additional EBV-posDLBCL cases. Overall, 53.7% (22/41) and 62.9% (22/35) of the cases expressed PD-L1 and c-MET, respectively, in neoplastic cells, whereas only 15.4% (4/26) expressed c-MYC. Neoplastic c-MET expression was positively correlated with PD-L1 (p < 0.001) and MYC expression (p = 0.016). However, EBV-posDLBCL cases did not show any differences in overall survival between PD-L1-, c-MET-, or c-MYC-positive and -negative cases or between age-related groups. Analysis of the association between somatic mutation load and EBV status showed no difference in the distribution of tumor mutant burden between the two lymphomas (p = 0.41). Recurrent mutations in EBV-posDLBCL implicated several genes, including DCAF8L1, KLF2, and NOL9, while in EBV-negDLBCL, ANK2, BPTF, and CNIH3 were more frequently mutated. Additionally, PIM1 is the most altered gene in all the WES-detected cases. CONCLUSIONS: Our results confirm that genomic alteration differs significantly between EBV-posDLBCL and EBV-negDLBCL, and reveal new genetic alterations in EBV-posDLBCL. The positive correlation of c-MET and PD-L1/c-Myc expression may be involved in the pathogenesis of EBV-posDLBCL, which is should be explored prospectively in trials involving MET-directed therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfoma de Células B Grandes Difuso/patología , Genómica , Péptidos y Proteínas de Señalización Intracelular
5.
Adv Sci (Weinh) ; 11(19): e2400626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38476058

RESUMEN

Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.

6.
ACS Nano ; 18(4): 3707-3719, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38230678

RESUMEN

The true promise of MXene as a practical supercapacitor electrode hinges on the simultaneous advancement of its three-dimensional (3D) assembly and the engineering of its nanoscopic architecture, two critical factors for facilitating mass transport and enhancing an electrode's charge-storage performance. Herein, we present a straightforward strategy to engineer robust 3D freestanding MXene (Ti3C2Tx) hydrogels with hierarchically porous structures. The tetraamminezinc(II) complex cation ([Zn(NH3)4]2+) is selected to electrostatically assemble colloidal MXene nanosheets into a 3D interconnected hydrogel framework, followed by a mild oxidative acid-etching process to create nanoholes on the MXene surface. These hierarchically porous, conductive holey-MXene frameworks facilitate 3D transport of both electrons and electrolyte ions to deliver an excellent specific capacitance of 359.2 F g-1 at 10 mV s-1 and superb capacitance retention of 79% at 5000 mV s-1, representing a 42.2% and 15.3% improvement over pristine MXene hydrogel, respectively. Even at a commercial-standard mass loading of 10.1 mg cm-2, it maintains an impressive capacitance retention of 52% at 1000 mV s-1. This rational design of an electrode by engineering nanoholes on MXene nanosheets within a 3D porous framework dictates a significant step forward toward the practical use of MXene and other 2D materials in electrochemical energy storage systems.

7.
Adv Mater ; 36(16): e2305755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227620

RESUMEN

Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.

8.
React Chem Eng ; 8(12): 3124-3132, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38024524

RESUMEN

A type-III porous liquid based on zeolitic imidazolate framework-8 (ZIF-8) and an ionic liquid trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([THTDP][BTI]) was synthesized and used for the desulfurization of model diesel. The desulfurization effect by ZIF-8/[THTDP][BTI] combined both the adsorptive desulfurization by ZIF-8 and the extraction desulfurization by [THTDP][BTI]. The removal of the three chosen aromatic organic sulfides by the ZIF-8/[THTDP][BTI] porous liquid followed the order of dibenzothiophene (73.1%) > benzothiophene (70.0%) > thiophene (61.5%). It was further found that deep desulfurization could be realized by ZIF-8/[THTDP][BTI] through triple desulfurization cycles and ZIF-8/[THTDP][BTI] can be regenerated readily. The desulfurization mechanism was explored further in detail by conformation search and density functional theory calculations. Calculations supported that the large molecular volume of [THTDP][BTI] excluded itself from the cavities of ZIF-8, making the pores of ZIF-8 in the porous liquid unoccupied and accessible by other guest species, here the studied organic sulfides. These calculations indicate that the van der Waals interactions were the main interactions between ZIF-8/[THTDP][BTI] and specifically benzothiophene. This work supports that the porous liquid ZIF-8/[THTDP][BTI] could potentially be used for desulfurization of diesel in industry.

9.
ACS Appl Mater Interfaces ; 15(48): 56347-56355, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37984875

RESUMEN

Controlled synthesis of polymer-based porous membranes via innovative methods is of considerable interest, yet it remains a challenge. Herein, we established a general approach to fabricate porous polyelectrolyte composite membranes (PPCMs) from poly(ionic liquid) (PIL) and MXene via an ice-assisted method. This process enabled the formation of a uniformly distributed macroporous structure within the membrane. The unique characteristics of the as-produced composite membranes display significant light-to-heat conversion and excellent performance for solar-driven water vapor generation. This facile synthetic strategy breaks new ground for developing composite porous membranes as high-performance solar steam generators for clean water production.

10.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887937

RESUMEN

Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (Fe3C/N-C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The Fe3C/N-C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with the structurally unique micro-/macroporous N-C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an Fe3C/N-C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.

11.
Macromol Rapid Commun ; 44(24): e2300451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37795776

RESUMEN

Lithium-sulfur (Li-S) battery features a high theoretical energy density, but the shuttle of soluble polysulfides between the two electrodes often results in a rapid capacity decay. Herein, a straightforward electrostatic adsorption strategy based on a cross-linked polyimidazolium separator as a snaring shield of polysulfides is reported, which suppresses the undesirable migration of polysulfides to the anode. The porous ionic network (PIN)-modified carbon nanotubes (CNTs) are successfully prepared and coated onto a commercial porous polypropylene membrane in a vacuum-filtration step. The favorable affinity of the imidazolium ring toward polysulfide via the polar interaction and the electrostatic effect of ions mitigates the undesirable shuttle of polysulfides in the electrolyte, improving the Li─S battery in terms of rate performance and cycling life. Compared to the reference PIN-free CNT-coated separator, the PIN/CNT-coated one has an increased initial capacity of 1.3 folds (up to 1394.8 mAh g-1 for PIN/CNT/PP-3) at 0.1 C.


Asunto(s)
Litio , Nanotubos de Carbono , Porosidad , Iones , Azufre
12.
Nanomicro Lett ; 15(1): 147, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286909

RESUMEN

Two-dimensional (2D) membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage, yet it remains a sound challenge to design 2D membranes of high selectivity and permeability for ion separation applications. Zeolitic imidazolate framework functionalized modified layered double hydroxide (ZIF-8@MLDH) composite membranes with high lithium-ion (Li+) permeability and excellent operational stability were obtained in this work by in situ depositing functional ZIF-8 nanoparticles into the nanopores acting as framework defects in MLDH membranes. The defect-rich framework amplified the permeability of Li+, and the site-selective growth of ZIF-8 in the framework defects bettered its selectivity. Specifically speaking, the ZIF-8@MLDH membranes featured a high permeation rate of Li+ up to 1.73 mol m-2 h-1 and a desirable selectivity of Li+/Mg2+ up to 31.9. Simulations supported that the simultaneously enhanced selectivity and permeability of Li+ are attributed to changes in the type of mass transfer channels and the difference in the dehydration capacity of hydrated metal cations when they pass through nanochannels of ZIF-8. This study will inspire the ongoing research of high-performance 2D membranes through the engineering of defects.

13.
Angew Chem Int Ed Engl ; 62(27): e202304173, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37132083

RESUMEN

Constructing photocatalyst systems to functionalize the inert C-H bonds has attracted extensive research interest. However, purposeful modulation of interfacial charge transfer in heterostructures remains a challenge, as it usually suffers from sluggish kinetics. Reported herein is an easy strategy to construct the heteroatom-induced interface for developing the titanium-organic frameworks (MOF-902) @ thiophene-based covalent triazine frameworks (CTF-Th) nanosheets S-scheme heterojunctions with controllable oxygen vacancies (OVs). Specifically, Ti atoms were first anchored onto the heteroatom site of CTF-Th nanosheets, and then grown into MOF-902 via an interfacial Ti-S linkage, generating OVs. Using in situ X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations, the enhanced interfacial charge separation and transfer induced by moderate OVs in the pre-designed S-scheme nanosheets was validated. The heterostructures exhibited an improved efficiency in photocatalytic C3-acylation of indoles under mild conditions with a yield 8.2 times larger than pristine CTF-Th or MOF-902 and enabled an extended scope of substrates (15 examples). This performance is superior to state-of-the-art photocatalyst and can be retained, without significant loss, after 12 consecutive cycles.

14.
ACS Nano ; 17(6): 5871-5879, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926859

RESUMEN

Tremendous efforts have been devoted to exploiting synthetic wet adhesives for real-life applications. However, developing low-cost, robust, and multifunctional wet adhesive materials remains a considerable challenge. Herein, a wet adhesive composed of a single-component poly(ionic liquid) (PIL) that enables fast and robust underwater adhesion is reported. The PIL adhesive film possesses excellent stretchability and flexibility, enabling its anchoring on target substrates regardless of deformation and water scouring. Surface force measurements show the PIL can achieve a maximum adhesion of 56.7 mN·m-1 on diverse substrates (both hydrophilic and hydrophobic substrates) in aqueous media, within ∼30 s after being applied. The adhesion mechanisms of the PIL were revealed via the force measurements, and its robust wet adhesive capacity was ascribed to the synergy of different non-covalent interactions, such as of hydrogen bonding, cation-π, electrostatic, and van der Waals interactions. Surprisingly, this PIL adhesive film exhibited impressive underwater sound absorption capacity. The absorption coefficient of a 0.7 mm-thick PIL film to 4-30 kHz sound waves could be as high as 0.80-0.92. This work reports a multifunctional PIL wet adhesive that has promising applications in many areas and provides deep insights into interfacial interaction mechanisms underlying the wet adhesion capability of PILs.

15.
Adv Mater ; 35(41): e2209215, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36972562

RESUMEN

Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium-tungsten bronze (Csx WO3 ) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5-10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.

16.
Pathol Int ; 73(5): 181-187, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36825754

RESUMEN

Approximately 40 families with multiple gastrointestinal stromal tumors (GISTs) and germline c-kit gene mutations have been reported. Three knock-in mouse models have been generated, and all the models showed a cecal GIST. In the present study, we established a cell line derived from cecal GIST in a familial GIST model mouse with KIT-Asp818Tyr. Since the established cells showed spindle-shaped morphology with atypical nuclei, and since immunohistochemistry revealed that they were positive for α-SMA but negative for KIT, CD34 and desmin, the phenotypes of the cells were reminiscent of dedifferentiated GIST-like ones but not the usual GIST-like ones. Gene expression analysis showed that the cell line, designated as DeGISTL1 cell, did not express c-kit gene apparently, but highly expressed HSP90 families and glutaminase 1. Pathway analysis of the cells revealed that metabolic pathway might promote their survival and growth. Pimitespib, a heat shock protein 90α/ß inhibitor, and Telaglenastat, a selective glutaminase 1 inhibitor, inhibited proliferation of DeGISTL1 cells and the combination of these showed an additive effect. DeGISTL1 cells might be a good model of dedifferentiated GISTs, and combination of Pimitespib and Telaglenastat could be a possible candidate for treatment strategy for them.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Ratones , Animales , Tumores del Estroma Gastrointestinal/patología , Glutaminasa/genética , Glutaminasa/uso terapéutico , Antineoplásicos/uso terapéutico , Mutación de Línea Germinal , Línea Celular , Proteínas Proto-Oncogénicas c-kit/genética
18.
Nat Commun ; 14(1): 263, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650177

RESUMEN

The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the "nanotrap", it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.

19.
J Colloid Interface Sci ; 637: 408-420, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36716665

RESUMEN

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 âˆ¼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.

20.
Acc Chem Res ; 55(24): 3675-3687, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36469417

RESUMEN

ConspectusDiscovering and constructing molecular functionality platforms for materials chemistry innovation has been a persistent target in the fields of chemistry, materials, and engineering. Around this task, basic scientific questions can be asked, novel functional materials can be synthesized, and efficient system functionality can be established. Poly(ionic liquid)s (PILs) have attracted growing interest far beyond polymer science and are now considered an interdisciplinary crossing point between multiple research areas due to their designable chemical structure, intriguing physicochemical properties, and broad and diverse applications. Recently, we discovered that 1,2,4-triazolium-type PILs show enhanced performance profiles, which are due to stronger and more abundant supramolecular interactions ranging from hydrogen bonding to metal coordination, when compared with structurally similar imidazolium counterparts. This phenomenon in our view can be related to the smart hydrogen atoms (SHAs), that is, any proton that binds to the carbon in the N-heterocyclic cations of 1,2,4-triazolium-type PILs. The replacement of one carbon by an electron-withdrawing nitrogen atom in the broadly studied heterocyclic imidazolium ring will further polarize the C-H bond (especially for C5-H) of the resultant 1,2,4-triazolium cation and establish new chemical tools for materials design. For instance, the H-bond-donating strength of the SHA, as well as its BroÌ·nsted acidity, is increased. Furthermore, polycarbene complexes can be readily formed even in the presence of weak or medium bases, which is by contrast rather challenging for imidazolium-type PILs. The combination of SHAs with the intrinsic features of heterocyclic cation-functionalized PILs (e.g., N-coordination capability and polymeric multibinding effects) enables new phenomena and therefore innovative materials applications.In this Account, recent progress on SHAs is presented. SHA-related applications in several research branches are highlighted together with the corresponding materials design at size scales ranging from nano- to micro- and macroscopic levels. At a nanoscopic level, it is possible to manipulate the interior and outer shapes and surface properties of PIL nanocolloids by adjusting the hydrogen bonds (H-bonds) between SHAs and water. Owing to the interplay of polycarbene structure, N-coordination, and the polymer multidentate binding of 1,2,4-triazolium-type PILs, metal clusters with controllable size at sub-nanometer scale were successfully synthesized and stabilized, which exhibited record-high catalytic performance in H2 generation via methanolysis of ammonia borane. At the microscopic level, SHAs are found to efficiently catalyze single crystal formation of structurally complex organics. Free protons in situ released from the SHAs serve as organocatalysts to activate formation of C-N bonds at room temperature in a series of imine-linked crystalline porous organics, such as organic cages, macrocycles and covalent organic frameworks; meanwhile the concurrent "salting-out" effect of PILs as polymers in solution accelerated the crystallization rate of product molecules by at least 1 order of magnitude. At the macroscopic scale, by finely regulating the supramolecular interactions of SHAs, a series of functional supramolecular porous polyelectrolyte membranes (SPPMs) with switchable pores and gradient cross-sectional structures were manufactured. These membranes demonstrate impressive figures of merit, ranging from chiral separation and proton recognition to switchable optical properties and real-time chemical reaction monitoring. Although the concept of SHAs is in the incipient stage of development, our successful examples of applications portend bright prospects for materials chemistry innovation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA