Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0300441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648205

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , COVID-19 , Colangiocarcinoma , Biología Computacional , SARS-CoV-2 , Biología de Sistemas , Colangiocarcinoma/genética , Colangiocarcinoma/virología , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Biología Computacional/métodos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/virología , Biología de Sistemas/métodos , Mapas de Interacción de Proteínas/genética , Pandemias , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Betacoronavirus/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes
2.
Cancer Res ; 84(11): 1747-1763, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38471085

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is the second most prevalent primary liver cancer. Although the genetic characterization of iCCA has led to targeted therapies for treating tumors with FGFR2 alterations and IDH1/2 mutations, only a limited number of patients can benefit from these strategies. Epigenomic profiles have emerged as potential diagnostic and prognostic biomarkers for improving the treatment of cancers. In this study, we conducted whole-genome bisulfite sequencing on 331 iCCAs integrated with genetic, transcriptomic, and proteomic analyses, demonstrating the existence of four DNA methylation subtypes of iCCAs (S1-S4) that exhibited unique postoperative clinical outcomes. The S1 group was an IDH1/2 mutation-specific subtype with moderate survival. The S2 subtype was characterized by the lowest methylation level and the highest mutational burden among the four subtypes and displayed upregulation of a gene-expression pattern associated with cell cycle/DNA replication. The S3 group was distinguished by high interpatient heterogeneity of tumor immunity, a gene-expression pattern associated with carbohydrate metabolism, and an enrichment of KRAS alterations. Patients with the S2 and S3 subtypes had the shortest survival among the four subtypes. Tumors in the S4 subtype, which had the best prognosis, showed global methylation levels comparable to normal controls, increased FGFR2 fusions/BAP1 mutations, and the highest copy-number variant burdens. Further integrative and functional analyses identified GBP4 demethylation, which is highly prevalent in the S2 and S3 groups, as an epigenetic oncogenic factor that regulates iCCA proliferation, migration, and invasion. Together, this study identifies prognostic methylome alterations and epigenetic drivers in iCCA. SIGNIFICANCE: Characterization of the DNA methylome of intrahepatic cholangiocarcinoma integrated with genomic, transcriptomic, and proteomic analyses uncovers molecular mechanisms affected by genome-wide DNA methylation alterations, providing a resource for identifying potential therapeutic targets.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Metilación de ADN , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/mortalidad , Pronóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/mortalidad , Masculino , Femenino , Biomarcadores de Tumor/genética , Isocitrato Deshidrogenasa/genética , Mutación , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Secuenciación Completa del Genoma/métodos , Anciano , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Perfilación de la Expresión Génica
5.
Front Cell Infect Microbiol ; 13: 1280223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162574

RESUMEN

Introduction: The coronavirus disease 2019 (COVID-19) pandemic, stemming from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has persistently threatened the global health system. Meanwhile, tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) still continues to be endemic in various regions of the world. There is a certain degree of similarity between the clinical features of COVID-19 and TB, but the underlying common pathogenetic processes between COVID-19 and TB are not well understood. Methods: To elucidate the common pathogenetic processes between COVID-19 and TB, we implemented bioinformatics and systematic research to obtain shared pathways and molecular biomarkers. Here, the RNA-seq datasets (GSE196822 and GSE126614) are used to extract shared differentially expressed genes (DEGs) of COVID-19 and TB. The common DEGs were used to identify common pathways, hub genes, transcriptional regulatory networks, and potential drugs. Results: A total of 96 common DEGs were selected for subsequent analyses. Functional enrichment analyses showed that viral genome replication and immune-related pathways collectively contributed to the development and progression of TB and COVID-19. Based on the protein-protein interaction (PPI) network analysis, we identified 10 hub genes, including IFI44L, ISG15, MX1, IFI44, OASL, RSAD2, GBP1, OAS1, IFI6, and HERC5. Subsequently, the transcription factor (TF)-gene interaction and microRNA (miRNA)-gene coregulatory network identified 61 TFs and 29 miRNAs. Notably, we identified 10 potential drugs to treat TB and COVID-19, namely suloctidil, prenylamine, acetohexamide, terfenadine, prochlorperazine, 3'-azido-3'-deoxythymidine, chlorophyllin, etoposide, clioquinol, and propofol. Conclusion: This research provides novel strategies and valuable references for the treatment of tuberculosis and COVID-19.


Asunto(s)
COVID-19 , MicroARNs , Mycobacterium tuberculosis , Tuberculosis , Humanos , SARS-CoV-2/genética , Biología Computacional , Genes Reguladores , Tuberculosis/genética , Mycobacterium tuberculosis/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...