Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1314, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351096

RESUMEN

Immune checkpoint blockade (ICB) has shown considerable promise for treating various malignancies, but only a subset of cancer patients benefit from immune checkpoint inhibitor therapy because of immune evasion and immune-related adverse events (irAEs). The mechanisms underlying how tumor cells regulate immune cell response remain largely unknown. Here we show that hexokinase domain component 1 (HKDC1) promotes tumor immune evasion in a CD8+ T cell-dependent manner by activating STAT1/PD-L1 in tumor cells. Mechanistically, HKDC1 binds to and presents cytosolic STAT1 to IFNGR1 on the plasma membrane following IFNγ-stimulation by associating with cytoskeleton protein ACTA2, resulting in STAT1 phosphorylation and nuclear translocation. HKDC1 inhibition in combination with anti-PD-1/PD-L1 enhances in vivo T cell antitumor response in liver cancer models in male mice. Clinical sample analysis indicates a correlation among HKDC1 expression, STAT1 phosphorylation, and survival in patients with hepatocellular carcinoma treated with atezolizumab (anti-PD-L1). These findings reveal a role for HKDC1 in regulating immune evasion by coupling cytoskeleton with STAT1 activation, providing a potential combination strategy to enhance antitumor immune responses.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Masculino , Ratones , Antígeno B7-H1 , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Hexoquinasa/metabolismo , Evasión Inmune , Neoplasias Hepáticas/patología , Factor de Transcripción STAT1/metabolismo , Escape del Tumor
2.
Nat Commun ; 14(1): 8154, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071226

RESUMEN

Itaconate is a well-known immunomodulatory metabolite; however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we find that macrophage-derived itaconate promotes HCC by epigenetic induction of Eomesodermin (EOMES)-mediated CD8+ T-cell exhaustion. Our results show that the knockout of immune-responsive gene 1 (IRG1), responsible for itaconate production, suppresses HCC progression. Irg1 knockout leads to a decreased proportion of PD-1+ and TIM-3+ CD8+ T cells. Deletion or adoptive transfer of CD8+ T cells shows that IRG1-promoted tumorigenesis depends on CD8+ T-cell exhaustion. Mechanistically, itaconate upregulates PD-1 and TIM-3 expression levels by promoting succinate-dependent H3K4me3 of the Eomes promoter. Finally, ibuprofen is found to inhibit HCC progression by targeting IRG1/itaconate-dependent tumor immunoevasion, and high IRG1 expression in macrophages predicts poor prognosis in HCC patients. Taken together, our results uncover an epigenetic link between itaconate and HCC and suggest that targeting IRG1 or itaconate might be a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor de Muerte Celular Programada 1/metabolismo , Agotamiento de Células T , Succinatos/farmacología , Succinatos/metabolismo , Epigénesis Genética
3.
Front Oncol ; 12: 857968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433434

RESUMEN

Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multifunctional protein that functions mainly in the nucleus and cytoplasm. However, whether SND1 regulates cellular activity through mitochondrial-related functions remains unclear. Herein, we demonstrate that SND1 is localized to mitochondria to promote phosphoglycerate mutase 5 (PGAM5)-mediated mitophagy. We find that SND1 is present in mitochondria based on mass spectrometry data and verified this phenomenon in different liver cancer cell types by performing organelle subcellular isolation. Specifically, The N-terminal amino acids 1-63 of SND1 serve as a mitochondrial targeting sequence (MTS), and the translocase of outer membrane 70 (TOM 70) promotes the import of SND1 into mitochondria. By immunoprecipitation-mass spectrometry (IP-MS), we find that SND1 interacts with PGAM5 in mitochondria and is crucial for the binding of PGAM5 to dynamin-related protein 1 (DRP1). Importantly, we demonstrate that PGAM5 and SND1-MTS are required for SND1-mediated mitophagy under FCCP and glucose deprivation treatment as well as for SND1-mediated cell proliferation and tumor growth both in vitro and in vivo. Aberrant expression of SND1 and PGAM5 predicts poor outcomes in hepatocellular carcinoma (HCC) patients. Taken together, these findings establish a previously unappreciated role of SND1 and the association of mitochondrion-localized SND1 with PGAM5 in mitophagy and tumor progression.

4.
Cell Death Dis ; 12(10): 902, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601503

RESUMEN

Metformin, the first-line drug for type II diabetes, has recently been considered an anticancer agent. However, the molecular target and underlying mechanism of metformin's anti-cancer effects remain largely unclear. Herein, we report that metformin treatment increases the sensitivity of hepatocarcinoma cells to methotrexate (MTX) by suppressing the expression of the one-carbon metabolism enzyme DHFR. We show that the combination of metformin and MTX blocks nucleotide metabolism and thus effectively inhibits cell cycle progression and tumorigenesis. Mechanistically, metformin not only transcriptionally represses DHFR via E2F4 but also promotes lysosomal degradation of the DHFR protein. Notably, metformin dramatically increases the response of patient-derived hepatocarcinoma organoids to MTX without obvious toxicity to organoids derived from normal liver tissue. Taken together, our findings identify an important role for DHFR in the suppressive effects of metformin on therapeutic resistance, thus revealing a therapeutically targetable potential vulnerability in hepatocarcinoma.


Asunto(s)
Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Metformina/farmacología , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Recuento de Células , Resistencia a Antineoplásicos/efectos de los fármacos , Factor de Transcripción E2F4/metabolismo , Antagonistas del Ácido Fólico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Organoides/efectos de los fármacos , Organoides/patología , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Transcripción Genética/efectos de los fármacos
5.
EMBO J ; 40(21): e108028, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34472622

RESUMEN

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an important cellular metabolite-sensing enzyme that can directly sense changes not only in ATP but also in metabolites associated with carbohydrates and fatty acids. However, less is known about whether and how AMPK senses variations in cellular amino acids. Here, we show that cysteine deficiency significantly triggers calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-mediated activation of AMPK. In addition, we found that CaMKK2 directly associates with cysteinyl-tRNA synthetase (CARS), which then binds to AMPKγ2 under cysteine deficiency to activate AMPK. Interestingly, we discovered that cysteine inhibits the binding of CARS to AMPKγ2, and thus, under cysteine deficiency conditions wherein the inhibitory effect of cysteine is abrogated, CARS mediates the binding of AMPK to CaMKK2, resulting in the phosphorylation and activation of AMPK by CaMKK2. Importantly, we demonstrate that blocking AMPK activation leads to cell death under cysteine-deficient conditions. In summary, our study is the first to show that CARS senses the absence of cysteine and activates AMPK through the cysteine-CARS-CaMKK2-AMPKγ2 axis, a novel adaptation strategy for cell survival under nutrient deprivation conditions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Adaptación Fisiológica/genética , Aminoacil-ARNt Sintetasas/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Cisteína/deficiencia , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal
6.
Nat Metab ; 2(3): 256-269, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32694775

RESUMEN

The transcriptional role of cMyc (or Myc) in tumorigenesis is well appreciated; however, it remains to be fully established how extensively Myc is involved in the epigenetic regulation of gene expression. Here, we show that by deactivating succinate dehydrogenase complex subunit A (SDHA) via acetylation, Myc triggers a regulatory cascade in cancer cells that leads to H3K4me3 activation and gene expression. We find that Myc facilitates the acetylation-dependent deactivation of SDHA by activating the SKP2-mediated degradation of SIRT3 deacetylase. We further demonstrate that Myc inhibition of SDH-complex activity leads to cellular succinate accumulation, which triggers H3K4me3 activation and tumour-specific gene expression. We demonstrate that acetylated SDHA at Lys 335 contributes to tumour growth in vitro and in vivo, and we confirm increased tumorigenesis in clinical samples. This study illustrates a link between acetylation-dependent SDHA deactivation and Myc-driven epigenetic regulation of gene expression, which is critical for cancer progression.


Asunto(s)
Transformación Celular Neoplásica , Complejo II de Transporte de Electrones/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilación , Ciclo del Ácido Cítrico , Complejo II de Transporte de Electrones/genética , Epigénesis Genética , Células HEK293 , Humanos , Ácido Succínico/metabolismo
8.
Nat Commun ; 8: 15278, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474697

RESUMEN

Menin is an enigmatic protein that displays unique ability to either suppress or promote tumorigenesis in a context-dependent manner. The role for Menin to promote oncogenic functions has been largely attributed to its essential role in forming the MLL methyltransferase complex, which mediates H3K4me3. Here, we identify an unexpected role of Menin in enhancing the transactivity of oncogene MYC in a way independent of H3K4me3 activity. Intriguingly, we find that Menin interacts directly with the TAD domain of MYC and co-localizes with MYC to E-Box to enhance the transcription of MYC target genes in a P-TEFb-dependent manner. We further demonstrate that, by transcriptionally promoting the expression of MYC target genes in cancer cells, Menin stimulates cell proliferation and cellular metabolism both in vitro and in vivo. Our results uncover a previously unappreciated mechanism by which Menin functions as an oncogenic regulatory factor that is critical for MYC-mediated gene transcription.


Asunto(s)
Progresión de la Enfermedad , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Cromatina/metabolismo , Elementos E-Box/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Neoplasias/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica/genética , Transporte de Proteínas , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...