Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Inorg Chem ; 63(27): 12572-12581, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38924490

RESUMEN

The kinetics of electrocatalytic reactions are closely related to the number and intrinsic activity of the active sites. Open active sites offer easy access to the substrate and allow for efficient desorption and diffusion of reaction products without significant hindrance. Metal-organic frameworks (MOFs) with open active sites show great potential in this context. To increase the density of active sites, trimesic acid was utilized as a ligand to anchor more Ni sites and in situ construct the nickel foam-loaded Ni-based trimesic MOF electrocatalyst (Ni-TMA-MOF/NF). When tested as an electrocatalyst for benzyl alcohol oxidation, Ni-TMA-MOF/NF exhibited lower overpotential and superior durability compared to Ni foam-loaded Ni-based terephthalic MOF electrocatalyst (Ni-PTA-MOF/NF) and Ni(OH)2 nanosheet array (Ni(OH)2/NF). Ni-TMA-MOF/NF required only a low potential of 1.65 V to achieve a high current density of 400 mA cm-2. Even after 40000 s of electrocatalytic oxidation at 1.5 V, Ni-TMA-MOF/NF maintained a current density of 175 mA cm-2 with ∼68% retention, showing its potential for benzyl alcohol oxidation. Through a combination of experimental and theoretical investigations, it was found that Ni-TMA-MOF/NF displayed superior electrocatalytic activity due to an optimized electron structure with high-valence Ni species and a high density of active sites, enabling long-term stable operation at high current densities. This study provides a new perspective on the design of electrocatalysts for benzyl alcohol oxidation.

2.
J Colloid Interface Sci ; 657: 37-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38029527

RESUMEN

Because of their special features, NiFe-LDHs (nickel iron layered double hydroxides) are prospective OER (oxygen evolution reaction) catalysts that might be utilized to catalyse the electrolysis of water and produce hydrogen to address the energy crisis. In this work, the electronic structure and electrocatalytic performance of the NiFe-LDH were accurately regulated by optimizing the Ni sites, which was enabled by adjacent metal sites coordinated with the "polyoxometalate electron sponge". With extension of the modification time, the Ni 2p binding energy, the Ni3+/Ni2+ ratio and the OER properties were gradually tuned, which indicated accurate regulation of active Ni sites by the "polyoxometalate electron sponge" on a temporal scale. Additionally, NiFe-LDH-PW12-12 h (NiFe-LDH modified by polyoxometalate anions for 12 h) showed the highest OER performance along with fast electron transfer, superior reaction kinetics and electrochemical durability, with an overpotential ∼68 mV lower than that of NiFe-LDH. This work provides an accurate strategy for regulating the electronic structures of active metal sites for the OER.

3.
Nano Lett ; 23(19): 9119-9125, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773017

RESUMEN

The discharge product Li2O2 is difficult to decompose in lithium-oxygen batteries, resulting in poor reversibility and cycling stability of the battery, and the morphology of Li2O2 has a great influence on its decomposition during the charging process. Therefore, reasonable design of the catalyst structure to improve the density of catalyst active sites and make Li2O2 form a morphology which is easy to decompose in the charging process will help improve the performance of battery. Here, we demonstrate a series of hollow nanoboxes stacked by Co3O4 nanoparticles with different sizes. The results show that the surface of the nanoboxes composed of smaller size Co3O4 nanoparticles contains abundant pore structure and higher concentration of oxygen vacancies, which changes the adsorption energy of reactants and intermediates, providing more nucleation sites for Li2O2, thereby forming Li2O2 with high dispersion, which is easier to decompose during charging, and eventually improve the performance of the battery. This provides an important idea for the structural design of the cathode catalyst in lithium-oxygen batteries and the regulation of Li2O2 morphology.

4.
Small ; 19(48): e2302979, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528713

RESUMEN

CoNi-LDH (layered CoNi double hydroxides) hollow nanocages with specific morphology are obtained by Ni ion etching of ZIF-67 (Zeolitic imidazolate framework-67). The structure of the layered materials is further modified by molecular intercalation. The original interlayer anions are replaced by the ion exchange effect of terephthalic acid, which helps to increase the interlayer distance of the material. The intercalated cage-like structures not only benefit for the storage of oxygen, and the discharge product reaction, but also have more support between the material layers. The experimental results show that the excessive use of intercalation agent will affect structural stability of the intercalated CoNi-LDH. By adjusting the amount of terephthalic acid, the intercalated CoNi-LDH-2 (with 0.02 mmol terephthalic acid intercalated) is not easy to collapse after 209 cycles and shows the best electrochemical performance in Li-O2 battery.

5.
Opt Express ; 30(15): 26201-26211, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236815

RESUMEN

In this paper, we propose a pre-trained-combined neural network (PTCN) as a comprehensive solution to the inverse design of an integrated photonic circuit. By utilizing both the initially pre-trained inverse and forward model with a joint training process, our PTCN model shows remarkable tolerance to the quantity and quality of the training data. As a proof of concept demonstration, the inverse design of a wavelength demultiplexer is used to verify the effectiveness of the PTCN model. The correlation coefficient of the prediction by the presented PTCN model remains greater than 0.974 even when the size of training data is decreased to 17%. The experimental results show a good agreement with predictions, and demonstrate a wavelength demultiplexer with an ultra-compact footprint of 2.6×2.6µm2, a high transmission efficiency with a transmission loss of -2dB, a low reflection of -10dB, and low crosstalk around -7dB simultaneously.

6.
Eur Neurol ; 85(6): 486-491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35830843

RESUMEN

INTRODUCTION: Familial amyloid polyneuropathy is currently prevalent worldwide as the transthyretin (TTR) Val30Met mutation, and there are other types of mutations. The purpose of this study was to understand the clinical manifestations, electrophysiological characteristics, and outcomes of hormone-related therapy in patients with the TTR Val30Leu mutation in China. METHODS: Clinical data were collected from 9 members of a family with the TTR Val30Leu mutation in China, and blood samples of 7 members of the family were sequenced. The electrophysiological examinations of 4 of them were collected and analysed. RESULTS: A total of 7 people had the TTR gene c.148G>T missense mutation and the TTR protein Val30Leu mutation in this family, and the positive members all had similar symptoms, such as limb paraesthesia and gastrointestinal symptoms. In addition, electrophysiological examination showed abnormal nerve conduction velocity in all 4 patients. CONCLUSIONS: The clinical manifestations of this mutation involve mainly limb sensory or motor disorders or gastrointestinal symptoms or both, and the electrophysiological examination shows neurogenic damage.


Asunto(s)
Neuropatías Amiloides Familiares , Humanos , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/diagnóstico , Mutación/genética , Mutación Missense , China
7.
Small ; 18(26): e2201150, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35638481

RESUMEN

Regulating the structure and morphology of discharge product is one of the key points for developing high performance Li-O2 batteries (LOBs). In this study, the reaction mechanism of LOB is successfully controlled by the regulated fine structure of cobalt oxide through tuning the crystallization process. It is demonstrated that the cobalt oxide with lower crystallinity shows stronger affinity toward LiO2 , inducing the growth of film-like LiO2 on the electrode surface and inhibiting the further conversion to Li2 O2 . The batteries catalyzed by the lower crystallinity cobalt oxide hollow spheres which pyrolyzed from ZIF-67 at 260 °C (ZIF-67-260), go through the generation and decomposition of amorphous film-like LiO2 , which significantly reduces the charge overpotential and improves the cycle life. By contrast, the ZIF-67 hollow spheres pyrolyzed at 320 °C (ZIF-67-320) with better crystallinity are more likely to go through the solution-mediated mechanism and induce the aggregation of discharge product, resulting in the sluggish kinetics and limited performance. The combined density functional theory data also directly support the strong relationship between the adsorption toward LiO2 by the electrocatalyst and the battery performance. This work provides an important way for tuning the intermediate and constructing the high-performance battery system.

8.
Inorg Chem ; 61(19): 7308-7317, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35507543

RESUMEN

Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have the potential to improve the oxidation of benzyl alcohol (BA) with a large surface area and open catalytic active sites. To achieve high-efficiency electrocatalysts for the oxidation of benzyl alcohol, a moderate solvothermal method was evolved to synthesize a series of 2D MOFs on nickel foam (Ni-MOF/NF, NiCo-61-MOF/NF, NiCo-21-MOF/NF). As the electrocatalyst used for the oxidation of benzyl alcohol, NiCo-61-MOF/NF presented a lower overpotential and superior chemical durability than other electrocatalysts; it only required a potential of ∼1.52 V (vs RHE) to reach 338.16 mA cm-2, with an oxidation efficiency of more than 86%. Besides, after continuous electrocatalysis for 20 000 s at 1.42 V (vs RHE), the current density of NiCo-61-MOF/NF nanosheets was still 38.67 mA cm-2 with 77.34% retention. This demonstrated that NiCo-61-MOF/NF nanosheet electrocatalysts had great potential for benzyl alcohol oxidation. From both the experimental and theoretical studies, it was discovered that NiCo-61-MOF/NF nanosheets have the highest electrocatalytic activity due to their distinctive ultrathin 2D structure, optimized electron structure, and more accessible active sites. This finding would pave a brand-new thought for the design of electrocatalysts with electrocatalytic activity for benzyl alcohol oxidation (EBO).

9.
J Am Chem Soc ; 144(18): 8204-8213, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35471968

RESUMEN

Aqueous-phase oxygen evolution reaction (OER) is the bottleneck of water splitting. The formation of the O-O bond involves the generation of paramagnetic oxygen molecules from the diamagnetic hydroxides. The spin configurations might play an important role in aqueous-phase molecular electrocatalysis. However, spintronic electrocatalysis is almost an uncultivated land for the exploration of the oxygen molecular catalysis process. Herein, we present a novel magnetic FeIII site spin-splitting strategy, wherein the electronic structure and spin states of the FeIII sites are effectively induced and optimized by the Jahn-Teller effect of Cu2+. The theoretical calculations and operando attenuated total reflectance-infrared Fourier transform infrared (ATR FT-IR) reveal the facilitation for the O-O bond formation, which accelerates the production of O2 from OH- and improves the OER activity. The Cu1-Ni6Fe2-LDH catalyst exhibits a low overpotential of 210 mV at 10 mA cm-2 and a low Tafel slope (33.7 mV dec-1), better than those of the initial Cu0-Ni6Fe2-LDHs (278 mV, 101.6 mV dec-1). With the Cu2+ regulation, we have realized the transformation of NiFe-LDHs from ferrimagnets to ferromagnets and showcase that the OER performance of Cu-NiFe-LDHs significantly increases compared with that of NiFe-LDHs under the effect of a magnetic field for the first time. The magnetic-field-assisted Cu1-Ni6Fe2-LDHs provide an ultralow overpotential of 180 mV at 10 mA cm-2, which is currently one of the best OER performances. The combination of the magnetic field and spin configuration provides new principles for the development of high-performance catalysts and understandings of the catalytic mechanism from the spintronic level.

10.
ACS Nano ; 16(3): 4487-4499, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35188376

RESUMEN

Two-dimensional MXene with high conductivity has metastable Ti atoms and inert functional groups on the surface, greatly limiting application in surface-related electrocatalytic reactions. A surface-functionalized nitrogen-doped two-dimensional TiO2/Ti3C2Tx heterojunction (N-TiO2/Ti3C2Tx) was fabricated theoretically, with high conductivity and optimized electrocatalytic active sites. Based on the conductive substrate of Ti3C2Tx, the heterojunction remained metallic and efficiently accelerated the transfer of Li+ and electrons in the electrode. More importantly, the precise regulation of active sites in the N-TiO2/Ti3C2Tx heterojunction optimized the adsorption for LiO2 and Li2O2, facilitating the sluggish kinetics with a lowest theoretical overpotential in both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Employed as an electrocatalyst in a Li-oxygen battery (Li-O2 battery), it demonstrated a high specific capacity of 15 298 mAh g-1 and a superior cyclability with more than 200 cycles at 500 mA g-1, as well as the swiftly reduced overpotential. Furthermore, combined with the in situ differential electrochemical mass spectrometry, ex situ Raman spectra, and SEM tests, the N-TiO2/Ti3C2Tx heterojunction electrode presented a superior stability and reduced side reaction along with the high performance toward the ORR and OER. It provides an efficient insight for the design of high-performance electrocatalysts for metal-oxygen batteries.

11.
Angew Chem Int Ed Engl ; 61(1): e202112511, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34709699

RESUMEN

We demonstrate a new material by intercalating Mo3 S13 2- into Mg/Al layered double hydroxide (abbr. Mo3 S13 -LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3 S13 -LDH displays ultra-high selectivity of Ag+ , Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+ >Hg2+ >Cu2+ >Pb2+ ≥Co2+ , Ni2+ , Zn2+ , Cd2+ . For Ag+ and Hg2+ , extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+ , especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu ) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qm Ag =1073 mg g-1 ) and Hg2+ (qm Hg =594 mg g-1 ) place the Mo3 S13 -LDH at the top of performing sorbent materials. Most importantly, Mo3 S13 -LDH captures Ag+ via two paths: a) formation of Ag2 S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0 ). The Mo3 S13 -LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.

12.
J Colloid Interface Sci ; 608(Pt 2): 1384-1392, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739996

RESUMEN

Mixed multiple oxidation states CoMoO4 nanowires (electrocatalysts) with tunable intrinsic oxygen vacancies were fabricated. CoMoO4 with proper oxygen vacancy can be employed to construct a Li-air battery with a high capacity and stable cyclability. This is possible because CoMoO4 contains surface oxygen vacancies, which result in the unit of CoMo bond, that is important for electrocatalysts used in Li-air batteries. Both the experimental and theoretical results demonstrate that the surface oxygen vacancies containing CoMoO4 nanowires have a higher electrocatalytic activity. This shows that the highly efficient electrocatalysts used for Li-air batteries were designed to modify the redox properties of the mixed metal oxide in the catalytic active sites. This successful material design led to an improved strategy for high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities based on the fast formation and extinction of ORR products.

13.
JACS Au ; 1(8): 1187-1197, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34467357

RESUMEN

Substrate channeling, where an intermediate in a multistep reaction is directed toward a reaction center rather than freely diffusing, offers several advantages when employed in catalytic cascades. Here we present a fusion enzyme comprised of an alcohol and aldehyde dehydrogenase, that is computationally designed to facilitate electrostatic substrate channeling using a cationic linker bridging the two structures. Rosetta protein folding software was utilized to determine an optimal linker placement, added to the truncated termini of the proteins, which is as close as possible to the active sites of the enzymes without disrupting critical catalytic residues. With improvements in stability, product selectivity (90%), and catalyst turnover frequency, representing 500-fold increased activity compared to the unbound enzymes and nearly 140-fold for a neutral-linked fusion enzyme, this design strategy holds promise for making other multistep catalytic processes more sustainable and efficient.

14.
ACS Appl Mater Interfaces ; 13(33): 39239-39247, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34375079

RESUMEN

Lithium oxygen (Li-O2) batteries have shown great potential as new energy-storage devices due to the high theoretical energy density. However, there are still substantial problems to be solved before practical application, including large overpotential, low energy efficiency, and poor cycle life. Herein, we have successfully synthesized a RuO2-Co3O4 nanohybrid with a rich oxygen vacancy and large specific surface area. The Li-O2 batteries based on the RuO2-Co3O4 nanohybrid shown obviously reduced overpotential and improved circulatory property, which can cycle stably for more than 100 cycles at a current density of 200 mA g-1. Experimental results and density function theory calculation prove that the introduction of RuO2 can increase oxygen vacancy concentration of Co3O4 and accelerate the charge transfer. Meanwhile, the hollow and porous structure leads to a large specific surface area about 104.5 m2 g-1, exposing more active sites. Due to the synergistic effect, the catalyst of the RuO2-Co3O4 nanohybrid can significantly reduce the adsorption energy of the LiO2 intermediate, thereby reducing the overpotential effectively.

15.
Chem Rev ; 120(23): 12903-12993, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050699

RESUMEN

Bioelectrocatalysis is an interdisciplinary research field combining biocatalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Catálisis , Electrodos , Oxidación-Reducción
16.
ACS Appl Mater Interfaces ; 12(21): 23896-23903, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32362112

RESUMEN

The development of high-performance, low-cost, and long-lasting electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is urgently needed for effective electrochemical water splitting. In the present study, an engineering process was employed to prepare "Lewis base-hungry" amorphous-crystalline nickel borate-nickel sulfide (Ni3(BO3)2-Ni3S2) heterostructures, which exhibited unprecedentedly high electrocatalytic activity toward both OER and HER in alkaline media. The optimal Ni3(BO3)2-Ni3S2/nickel foam (Ni3(BO3)2-Ni3S2/NF) electrode displayed an ultralow overpotential of only -92 and +217 mV to reach the current density of 10 mA cm-2 for HER and OER, respectively. When the Ni3(BO3)2-Ni3S2/NF electrode was used as both the anode and cathode for overall water splitting, a low cell voltage of 1.49 V was needed to achieve the current density of 10 mA cm-2, which was superior to the performance of most noble metal-free electrocatalysts. Results from density functional theory calculations showed that the Lewis base-hungry sites in the heterostructures effectively enhanced the chemisorption of hydrogen and oxygen intermediates, a critical step in HER and OER electrocatalysis. Results from this study highlight the significance of rational design and engineering of heterostructured materials for the development of high-efficiency electrocatalysts.

17.
J Am Chem Soc ; 142(18): 8374-8382, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286819

RESUMEN

Two obstacles limit the application of oxidoreductase-based asymmetric synthesis. One is the consumption of high stoichiometric amounts of reduced cofactor. The other is the low solubility of organic substrates, intermediates, and products in the aqueous phase. In order to address these two obstacles to oxidoreductase-based asymmetric synthesis, a biphasic bioelectrocatalytic system was constructed and applied. In this study, the preparation of chiral ß-hydroxy nitriles catalyzed by alcohol dehydrogenase (AdhS) and halohydrin dehalogenase (HHDH) was investigated as a model bioelectrosynthesis, since they are high-value intermediates in statin synthesis. Diaphorase (DH) was immobilized by a cobaltocene-modified poly(allylamine) redox polymer on the electrode surface (DH/Cc-PAA bioelectrode) to achieve effective bioelectrocatalytic NADH regeneration. Since AdhS is a NAD-dependent dehydrogenase, the diaphorase-modified biocathode was used to regenerate NADH to support the conversion from ethyl 4-chloroacetoacetate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) catalyzed by AdhS. The addition of methyl tert-butyl ether (MTBE) as an organic phase not only increased the uploading of COBE but also prevented the spontaneous hydrolysis of COBE, extended the lifetime of DH/Cc-PAA bioelectrode, and increased the Faradaic efficiency and the concentration of generated (R)-ethyl-4-cyano-3-hydroxybutyrate ((R)-CHCN). After 10 h of reaction, the highest concentration of (R)-CHCN in the biphasic bioelectrocatalytic system was 25.5 mM with 81.2% enantiomeric excess (eep). The conversion ratio of COBE achieved 85%, which was 8.8 times higher than that achieved with the single-phase system. Besides COBE, two other substrates with aromatic ring structures were also used in this biphasic bioelectrocatalytic system to prepare the corresponding chiral ß-hydroxy nitriles. The results indicate that the biphasic bioelectrocatalytic system has the potential to produce a variety of ß-hydroxy nitriles with different structures.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Hidrolasas/metabolismo , Nitrilos/metabolismo , Alcohol Deshidrogenasa/química , Biocatálisis , Técnicas Electroquímicas , Hidrolasas/química , Estructura Molecular , Nitrilos/química
18.
Angew Chem Int Ed Engl ; 59(23): 8969-8973, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32198829

RESUMEN

Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.


Asunto(s)
Alcanos/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Oxigenasas de Función Mixta/metabolismo , Electrodos , Transporte de Electrón , Compuestos Epoxi/química , Hidroxilación , Metilación , Oxígeno/química , Pseudomonas putida/enzimología , Safrol/análogos & derivados , Safrol/química , Especificidad por Sustrato
19.
Chemistry ; 26(32): 7244-7249, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32153069

RESUMEN

NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+ , resulting in electron-deficient properties of the Ni sites, which would function as "electron-hungry" sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li-NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm-2 , which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2 . Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.

20.
J Am Chem Soc ; 142(3): 1574-1583, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31855420

RESUMEN

The new material Polypyrrole-Mo3S13 (abbr. Mo3S13-Ppy) is a new material prepared by ion-exchange between Ppy-NO3 and (NH4)2Mo3S13. The Mo3S13-Ppy was designed to exhibit strong selectivity for Ag+ and highly toxic Hg2+ in mixtures with other ions. It displays an apparent selectivity ranking of Hg2+ > Ag+ ≥ Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+. The strong affinity of Mo3S13-Ppy for Ag+ and Hg2+ was confirmed with extremely high distribution coefficients (Kd) (∼107 mL/g) and remarkable removal efficiencies (>99.99%), resulting in <1 ppb concentrations of these ions. Furthermore, Mo3S13-Ppy achieved excellent separation selectivity for Ag+ from Cu2+ (even at a high Cu2+/Ag+ ratio, the molar ratio of 867 and mass ratio of 500) because of the special structure of Mo3S132- and its component Mo4+ and (S2)2-. This is promising for the direct extraction of low-grade silver from copper-rich minerals. The maximum Ag uptake capacity of 408 mg/g is redox-based and surprisingly involves the deposition of large, millimeter sized, metallic silver (Ag0) crystals on the surface of Mo3S13-Ppy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...