Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e29807, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737244

RESUMEN

Dihydroquercetin (DHQ) is commonly used as a dietary additive, but its activity in improving brain injury with metabolic syndrome (MS) remains known. In present study, the MS rat model was induced using 10 % fructose water. The apoptosis rate of primary brain cells was detected. The HIF-1α/AKT/NR2B signalling pathway, levels of KEAP1/NRF2, HO-1 and NQO-1 were detected. In vitro experiments were performed using H2O2-stimulated PC-12 cells. The effect of DHQ on rates of cell survival and apoptosis were detected. After silencing HIF-1α, we further elucidate the mechanism of action of DHQ. The results indicated that DHQ reduced the hyperactivity and inhibited oxidative stress via increasing the levels of HIF-1α/AKT/NR2B signalling pathway, whereas regulated KEAP1/NRF2 pathway. In vitro experiments showed that the HIF-1α plays an important role in this process. Overall, DHQ may improve impaired brain function in rats with metabolic syndrome by regulating the HIF-1α/AKT/NR2B signalling pathway.

2.
Food Chem Toxicol ; 186: 114546, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408633

RESUMEN

Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.


Asunto(s)
Lesión Renal Aguda , Indoles , Isoquinolinas , Enfermedades Mitocondriales , Sulfonamidas , Ratones , Animales , Cisplatino/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Riñón/patología , Apoptosis
3.
Cureus ; 15(12): e50351, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089953

RESUMEN

Background and objectives Cyclophosphamide (CP) is widely used as a chemotherapy drug for the treatment of malignant tumors and autoimmune diseases, but it has strong toxic and side effects and can cause permanent damage to the ovaries, which affects women's quality of life. This study aimed to investigate the anti-premature ovarian failure protective effect of allantoin isolated from Dioscorea opposita Thunb. Methods Firstly, 75 mg/kg CP was injected into rats to establish an in vivo model of premature ovarian failure (POF). The POF rats were divided into the normal control group (NC), premature ovarian failure group (POF), and POF group treated with allantoin (ALL I 140 mg/kg and ALL II 70 mg/kg, daily 21 days). It investigated the estrous cycles, hormone levels, apoptosis rate, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitophagy, and protein marker (Bax, Bcl2, LC3B, L-1ß, caspase-1 and NLRP3). Results The results indicated that allantoin alleviated cyclophosphamide-induced premature ovarian failure in female rats, decreased the anoestrum, increased the level of estradiol (E2), and decreased the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), decreased apoptosis rate, MMP, mitophagy and ROS in ovarian granulosa cells of POF rats, down-regulated L-1ß, caspase-1, LC3B-II/LC3B-I in ovarian tissue, and up-regulated the Bcl2 and NLRP3. Conclusions Our study revealed the ovarian-protective effect of allantoin in CP-induced premature ovarian failure for the first time, the effect was achieved through attenuation of the apoptosis, autophagy, and pyroptosis. The study underlines the potential clinical application of allantoin as a protectant agent for premature ovarian failure.

4.
Int J Nanomedicine ; 18: 7483-7503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090366

RESUMEN

Purpose: Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods: We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results: We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion: OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.


Asunto(s)
Hipertensión Pulmonar , Nanopartículas , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Monocrotalina/efectos adversos , Fosfolipasas de Tipo C/efectos adversos , Fosfolipasas de Tipo C/metabolismo , Arteria Pulmonar , Transducción de Señal
5.
Artículo en Inglés | MEDLINE | ID: mdl-37289610

RESUMEN

Sparse additive machines (SAMs) have shown competitive performance on variable selection and classification in high-dimensional data due to their representation flexibility and interpretability. However, the existing methods often employ the unbounded or nonsmooth functions as the surrogates of 0-1 classification loss, which may encounter the degraded performance for data with outliers. To alleviate this problem, we propose a robust classification method, named SAM with the correntropy-induced loss (CSAM), by integrating the correntropy-induced loss (C-loss), the data-dependent hypothesis space, and the weighted lq,1 -norm regularizer ( q ≥ 1 ) into additive machines. In theory, the generalization error bound is estimated via a novel error decomposition and the concentration estimation techniques, which shows that the convergence rate O(n-1/4) can be achieved under proper parameter conditions. In addition, the theoretical guarantee on variable selection consistency is analyzed. Experimental evaluations on both synthetic and real-world datasets consistently validate the effectiveness and robustness of the proposed approach.

6.
Virus Res ; 334: 199161, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356580

RESUMEN

Prototype foamy virus (PFV) is an ancient retrovirus that infects humans with persistent latent infections and non-pathogenic consequences. Lifelong latent PFV infections can be caused by restrictive factors in the host. However, the molecular mechanisms underlying host cell regulation during PFV infection are not fully understood. The aim of the study was to investigate whether a zinc finger protein (ZFP), ZNF219, as a transcription factor, can regulate the transcriptional activity of the viral promoter. Here, using transcriptome sequencing, we found that ZNF219, is downregulated in PFV infected cells and that ZNF219 suppresses viral replication by targeting the viral 5'LTR promoter region to repress its transcription. We also found that PFV infection induced abnormal expression of miRNAs targeting the ZNF219-3'UTR to downregulate ZNF219 expression. These findings indicated that ZNF219 may be a potent antiviral factor for suppressing PFV infection, and may shed light on the mechanism of virus-host interactions.


Asunto(s)
MicroARNs , Spumavirus , Humanos , Spumavirus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Replicación Viral , Proteínas de Unión al ADN/metabolismo
7.
BMC Complement Med Ther ; 23(1): 207, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353787

RESUMEN

BACKGROUND: Renal fibrosis with Renin-angiotensin-aldosterone system (RAAS) activation and oxidative stress are one of the major complications in hypertension. 2-phenylacetamide (PA), a major active component of Lepidium apetalum Willd. (L.A), has numerous pharmacological effects. Its analogues have the effect of anti-renal fibrosis and alleviating renal injury. This study aims to explore the underlying mechanism of PA for regulating the renal fibrosis in SHR based on the MAPK pathway mediated RAAS and oxidative stress. METHODS: The SHR rats were used as the hypertension model, and the WKY rats were used as the control group. The blood pressure (BP), urine volume were detected every week. After PA treatment for 4 weeks, the levels of RAAS, inflammation and cytokines were measured by Enzyme-Linked Immunosorbnent Assay (ELISA). Hematoxylin-Eosin staining (HE), Masson and Immunohistochemistry (IHC) were used to observe the renal pathology, collagen deposition and fibrosis. Western blot was used to examine the MAPK pathway in renal. Finally, the SB203580 (p38 MAPK inhibitor) antagonism assay in the high NaCl-induced NRK52e cells was used, together with In-Cell Western (ICW), Flow Cytometry (FCM), High Content Screening (HCS) and ELISA to confirm the potential pharmacological mechanism. RESULTS: PA reduced the BP, RAAS, inflammation and cytokines, promoted the urine, and relieved renal pathological injury and collagen deposition, repaired renal fibrosis, decreased the expression of NADPH Oxidase 4 (NOX4), transforming growth factor-ß (TGF-ß), SMAD3 and MAPK signaling pathway in SHR rats. Meanwhile,,the role of PA could be blocked by p38 antagonist SB203580 effectively in the high NaCl-induced NRK52e cells. Moreover, molecular docking indicated that PA occupied the ligand binding sites of p38 MAPK. CONCLUSION: PA inhibited renal fibrosis via MAPK signalling pathway mediated RAAS and oxidative stress in SHR Rats.


Asunto(s)
Bencenoacetamidas , Hipertensión , Enfermedades Renales , Lepidium , Ratas , Animales , Ratas Endogámicas SHR , Sistema Renina-Angiotensina , Lepidium/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología , Cloruro de Sodio/uso terapéutico , Ratas Endogámicas WKY , Enfermedades Renales/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Estrés Oxidativo , Colágeno/metabolismo , Colágeno/farmacología , Colágeno/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Citocinas/metabolismo , Fibrosis , Inflamación , Bencenoacetamidas/farmacología , Bencenoacetamidas/uso terapéutico
8.
J Ethnopharmacol ; 313: 116503, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116727

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Asthma is a chronic airway inflammatory disease. Current treatment of mainstream medications has significant side effects. There is growing evidence that the refractoriness of asthma is closely related to common changes in the lung and intestine. The lungs and intestines, as sites of frequent gas exchange in the body, are widely populated with gas signaling molecules NO and CO, which constitute NO-CO metabolism and may be relevant to the pathogenesis of asthma in the lung and intestine. The Chinese herbal formula Tingli Dazao Xiefei Decoction (TD) is commonly used in clinical practice to treat asthma with good efficacy, but there are few systematic evaluations of the efficacy of asthma on NO-CO metabolism, and the mode of action of its improving effect on the lung and intestine is unclear. AIM OF THE STUDY: To investigate the effect of TD on the lung and intestine of asthmatic rats based on NO-CO metabolism. MATERIALS AND METHODS: In vivo, we established a rat asthma model by intraperitoneal injection of sensitizing solution with OVA atomization, followed by intervention by gavage administration of TD. We simultaneously examined alterations in basal function, pathology, NO-CO metabolism, inflammation and immune cell homeostasis in the lungs and intestines of asthmatic rats, and detected changes in intestinal flora by macrogenome sequencing technology, with a view to multi-angle evaluation of the treatment effects of TD on asthmatic rats. In vitro, lung cells BEAS-2B and intestinal cells NCM-460 were used to establish a model of lung injury causing intestinal injury using LPS and co-culture chambers, and lung cells or intestinal cells TD-containing serum was administered to intervene. Changes in inflammatory, NO-CO metabolism-related, cell barrier-related and oxidative stress indicators were measured in lung cells and intestinal cells to evaluate TD on intestinal injury by way of amelioration and in-depth mechanism. RESULTS: In vivo, our results showed significant basal functional impairment in the lung and intestine of asthmatic rats, and an inflammatory response, immune cell imbalance and intestinal flora disturbance elicited by NO-CO metabolic disorders were observed (P < 0.05 or 0.01). The administration of TD was shown to deliver a multidimensional amelioration of the impairment induced by NO-CO metabolic disorders (P < 0.05 or 0.01). In vitro, the results showed that LPS-induced lung cells BEAS-2B injury could cause NO-CO metabolic disorder-induced inflammatory response, cell permeability damage and oxidative stress damage in intestinal cells NCM-460 (P < 0.01). The ameliorative effect on intestinal cells NCM-460 could only be exerted when TD-containing serum interfered with lung cells BEAS-2B (P < 0.01), suggesting that the intestinal ameliorative effect of TD may be exerted indirectly through the lung. CONCLUSION: TD can ameliorate NO-CO metabolism in the lung and thus achieve the indirectly amelioration of NO-CO metabolism in the intestine, ultimately achieving co-regulation of lung and intestinal inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders in asthma in vivo and in vitro. Targeting lung and intestinal NO-CO metabolic disorders in asthma may be a new therapeutic idea and strategy for asthma.


Asunto(s)
Asma , Enfermedades Intestinales , Enfermedades Metabólicas , Ratas , Animales , Ratones , Lipopolisacáridos/farmacología , Pulmón , Intestinos/patología , Estrés Oxidativo , Inflamación/patología , Enfermedades Intestinales/patología , Enfermedades Metabólicas/metabolismo , Ovalbúmina/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
9.
J Nat Med ; 77(2): 262-275, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36520340

RESUMEN

To explore the effect of acacetin on myocardial mitochondrial dysfunction in spontaneously hypertensive rats (SHR) with insulin resistance (IR), and the possible mechanism. Rapid IR was first induced in fructose-fed SHR, and they were then treated with acacetin (25, 50 mg/kg). After 7 weeks, the rats were tested for hypertension, IR, cardiac function, and mitochondrial damage status. Potential mechanisms of action were explored in terms of oxidative stress, mitochondrial fission and division, apoptosis, and the insulin signaling pathway. Subsequently, the PI3K gene was silenced, after intervention with acacetin (5 µM) for 24 h, and H2O2 was used to stimulate H9c2 for 4 h, it was evaluated whether silencing PI3K would affect the therapeutic effect of acacetin. In SHR fed with fructose, acacetin can improve hypertension, IR, cardiac function (LVEF, LVFS), and mitochondrial damage (mitochondria number, ATP); inhibit oxidative stress (ROS, SOD, Nrf2, Keap1), mitochondrial fission (MFF, Drp1), and myocardial cell apoptosis (apoptosis rate, Bax, Bcl-2, cytochrome c); promote mitochondrial fusion (Mfn2) and activate insulin signaling pathways (PI3K/AKT). However, silencing PI3K inhibited the abovementioned effects of acacetin. In conclusion, acacetin improved myocardial mitochondrial dysfunction through regulating oxidative stress, mitochondrial fission and fusion, and mitochondrial pathway apoptosis mediated by PI3K/AKT signaling pathway in hypertensive rats with IR.


Asunto(s)
Hipertensión , Insulinas , Ratas , Animales , Ratas Endogámicas SHR , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Miocitos Cardíacos , Peróxido de Hidrógeno/metabolismo , Fructosa , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis , Mitocondrias/metabolismo , Insulinas/metabolismo , Insulinas/farmacología
10.
J Asian Nat Prod Res ; 25(1): 1-10, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35023415

RESUMEN

Five new compounds, named gingerol A (1a and 1b), gingerol B (2), diphenylheptane glycoside A (3) and diphenylheptane glycoside B (4), were isolated from the acetone extract of Zingiberis Rhizoma Recens. The structures of new compounds were elucidated on the basis of spectroscopic methods including UV, IR, 1D NMR, 2D NMR and HR-ESI-MS. Compounds 2-4 could significantly decrease the apoptosis rate and increase the survival rate of human normal lung epithelial cells (BEAS-2B) at the concentration of 10 µM.


Asunto(s)
Catecoles , Extractos Vegetales , Humanos , Glicósidos
11.
Biomed Pharmacother ; 150: 113061, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658231

RESUMEN

OBJECTIVE: We investigated the protective effects of ephedra herb (HEPH) on adriamycin-induced testicular toxicity in rats and explored the potential mechanisms underlying these effects. METHODS: A rat model of adriamycin injury was established, and sperm motility-related indicator and oxidative stress levels in the testis were evaluated. Serum levels of sex hormones and levels of testicular cell apoptosis were detected by enzyme-linked immunosorbent assay and flow cytometry, respectively. Western blotting (WB), immunofluorescence analyses, and reverse transcription-polymerase chain reaction (RT-PCR) were performed to evaluate the gonadotropin-releasing hormone (GnRH) signalling pathway- and meiosis-related genes and proteins. In subsequent in vitro experiments, adriamycin was used to stimulate GC-1 cells, which were treated with HEPH, ephedrine, or pseudoephedrine. Cell viability was assessed using flow cytometry to detect apoptosis and reactive oxygen species, whereas the GnRH signalling pathway and levels of meiosis-related genes and proteins were evaluated by InCell WB, a high-content imaging system, and RT-PCR. RESULTS: Per in vivo experiments, HEPH restored testicular weight and function, sperm characteristics, serum and tissue hormonal levels, and antioxidant defences and significantly activated the GnRH signalling pathway- and meiosis-related protein levels. All protective effects of HEPH against adriamycin-induced injury were antagonised by the GnRH antagonist cetrorelix. In vitro, HEPH, ephedrine, and pseudoephedrine significantly reduced adriamycin-induced GC-1 cell apoptosis and reactive oxygen species levels and increased the expression of GnRH signalling pathway- and meiosis-related proteins. The effect of pseudoephedrine was greater than that of ephedrine, and these findings may be an important basis for understanding the effects of HEPH.


Asunto(s)
Ephedra , Testículo , Animales , Doxorrubicina/farmacología , Efedrina/metabolismo , Efedrina/farmacología , Hormona Liberadora de Gonadotropina/farmacología , Masculino , Seudoefedrina/metabolismo , Seudoefedrina/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Motilidad Espermática
12.
Int J Nanomedicine ; 17: 1549-1566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401001

RESUMEN

Purpose: Pseudoephedrine (PSE) has rapid absorption and metabolism, which limits its pharmacologic actions. We postulated that pseudoephedrine nanoparticles (PSE-NPs) with high bioavailability could overcome this limitation. The defensive function of PSE-NPs nanoparticles against adriamycin-induced reproductive toxicity in mice was studied. Methods: We encapsulated PSE in polylactide-polyglycolide nanoparticles (PLGA-NPs) and verified their protective activity against testicular injury in vivo and in vitro. Results: We report a promising delivery system that loads PSE into PLGA-NPs and finally assembles it into a nanocomposite particle. In vitro, PSE-NPs reduced the adriamycin-induced apoptosis of GC-1 cells significantly, improved mitochondrial energy metabolism and promoted expression of the proteins related to the gonadotropin-releasing hormone (GnRh) receptor signaling pathway. In vivo, evaluation of sperm indices and histology showed that adriamycin could induce testicular toxicity. PSE-NPs significantly increased the sperm motility of mice, reduced the percent apoptosis and oxidative stress of testes, increased serum levels of GnRh, activated the GnRhR signaling pathway in testes and promoted expression of meiosis-related factors. Conclusion: In view of their safety and efficiency, these PSE-NPs have potential applications in alleviating adriamycin-induced reproductive toxicity.


Asunto(s)
Nanopartículas , Seudoefedrina , Animales , Doxorrubicina/toxicidad , Hormona Liberadora de Gonadotropina , Masculino , Ratones , Transducción de Señal , Motilidad Espermática
13.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1009-1016, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35285201

RESUMEN

The present study investigated the effect of active components of Descurainia sophia on allergic asthma and explored the underlying mechanism. SD male rats were randomly divided into a normal group(NC), a model group(M), a D. sophia decoction group(DS), a D. sophia fatty oil group(FO), a D. sophia flavonoid glycoside group(FG), a D. sophia oligosaccharide group(Oli), and a positive drug dexamethasone group(Y). The allergic asthma model was induced in rats by intraperitoneal injection of ovalbumin(OVA) and aluminum hydroxide gel adjuvant(sensitization) and atomization of OVA solution(excitation). After modeling, asthma-related indicators, tracheal phenol red excretion, inflammatory cell levels in the peripheral blood, lung permeability index(LPI), and oxygenation index(OI) of rats were detected. The pathological changes of lung tissues were observed by HE staining. Enzyme-linked immunosorbent assay(ELISA) was used to detect the content of inflammatory factors immunoglobulin E(IgE), interleukin-4(IL-4), and interferon-γ(IFN-γ) in the bronchoalveolar lavage fluid(BALF) and the content of endothelin-1(ET-1) and angiotensin-converting enzyme(ACE) in lung tissue homogenate. The serum content of nitric oxide(NO) was detected by colorimetry. Western blot was employed to determine the protein expression of Toll-like receptor 4(TLR4), nuclear factor κB-p65(NF-κB-p65), phosphorylated NF-κB-p65(p-NF-κB-p65), myosin light chain kinase(MLCK), vascular endothelial cadherin(VE cadherin), connexin 43, and claudin 5, and the mechanism of active components of D. sophia on allergic asthma was explored. As revealed by the results, the M group showed extensive infiltration of inflammatory cells around the bronchus of the lung tissues of the allergic asthma rats, thickened bronchial wall, severely deformed alveolar structure, increased number of wheezes, the content of IgE, IL-4, ET-1, and ACE, inflammatory cells, and LPI, and reduced latency of asthma, tracheal phenol red excretion, IFN-γ, NO content, and OI. After the intervention of the active components of D. sophia, the DS, FO, FG, Oli, and Y groups showed improved asthma-related indicators, tracheal phenol red excretion, and lung tissue lesions in allergic asthma rats, and the effects in the FO and Oli groups were superior. The content of inflammatory factors in BALF was recovered in the DS, FO, and Y groups and the FG and Oli groups. The number of inflammatory cells in rats was reduced in the DS and FO groups, and the FG, Oli, and Y groups to varying degrees, and the effect in the FO group was superior. DS, FO, Oli, and Y reduced ET-1, ACE, and LPI and increased NO and OI. FG recovered NO, ET-1, ACE, LPI, and OI to improve lung epithelial damage and permeability. Further investigation of inflammation-related TLR4/NF-κB pathways, MLCK, and related skeleton protein levels showed that TLR4, NF-κB-p65, p-NF-κB-p65, and MLCK levels were increased, and VE cadherin, connexin 43, and claudin 5 were reduced in the M group. DS, FO, FG, Oli, and Y could reduce the protein expression related to the TLR4 pathway to varying degrees, and regulate the protein expression of MLCK, VE cadherin, connexin 43, and claudin 5. It is inferred that the active components of D. sophia improve lung permeability in rats with allergic asthma presumedly by regulating the TLR4/NF-κB signaling pathway to improve airway inflammation, mediating MLCK and connexin, and regulating epithelial damage.


Asunto(s)
Asma , Animales , Asma/inducido químicamente , Asma/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar , Inflamación/metabolismo , Pulmón , Masculino , Permeabilidad , Ratas
14.
Phytomedicine ; 100: 154065, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35358932

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE: This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS: The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 µM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS: Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION: Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Selaginellaceae , Animales , Apoptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico , Flavonoides/farmacología , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Miocitos Cardíacos , Estrés Oxidativo
15.
J Healthc Eng ; 2022: 7244847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132360

RESUMEN

The purpose of this study was to analyze the influencing factors of frailty in elderly patients with type II diabetes. 332 elderly patients with type II diabetes admitted to our hospital from May 2018 to December 2019 were selected as the study subjects. The degree of frailty was evaluated by the Fried fragility phenotype scale, and the general information and the clinical data of patients were collected by inquiry and questionnaire survey. After that, all the data were analyzed by SPSS 20.0. Univariate analysis showed that there were significant differences in age, medication types, dietary habits, exercise tolerance, exercise capacity, body balance, coordination ability, urinary incontinence, anxiety, etc., in elderly patients with type II diabetes who suffered from different degrees of frailty (P < 0.01). In addition, there were significant differences in the presence of coronary heart disease, heart failure, atrial fibrillation, pulmonary diseases, osteoarticular diseases, anemia, and other blood diseases of elderly patients with type II diabetes who suffered from different degrees of frailty (P < 0.01). Multiple Logistic regression analyses indicated that weakened exercise tolerance, reduced exercise capacity, atrial fibrillation, anemia, and other blood diseases were the influencing factors of the frailty in elderly patients with type II diabetes. The degree of frailty in elderly patients with diabetes is affected by many factors, such as exercise tolerance, exercise capacity, atrial fibrillation, anemia, and other blood diseases; thus, reasonable intervention should be implemented for elderly patients with type II diabetes according to the influencing factors so as to effectively relieve frailty.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Fragilidad , Insuficiencia Cardíaca , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Anciano Frágil , Humanos
16.
Food Res Int ; 151: 110863, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980399

RESUMEN

Carboxymethyl chitosan (CMCh), an ampholetic chitosan derivative, has found broad applications in the food industry. However, its cryo-protective properties remained less explored compared to other viscous polysaccharides, such as carboxymethyl cellulose, carrageenan etc., which have been widely utilized as frozen food additives. In this study, we investigated the effect of CMCh addition to frozen dough in terms of water state, protein structure, and the textural properties of prepared frozen dumpling wrappers. Results indicated that CMCh restricted the water migration in dough and delayed protein deterioration during frozen storage. Specifically, the content of freezable water in dough was reduced and the water distribution became more uniform as reflected by DCS and LF-NMR analysis. CMCh also stabilized disulfide bond and secondary structures of the protein, leading to inhibition of dough rheology changes. Accordingly, the obtained frozen dumplings wrappers demonstrated decreased cracking rate and water loss, and improved textural properties. Moreover, CMCh with higher degree of carboxymethyl substitution (DS: 1.2, CMCh-B) exhibited better cryo-protective effects compared to CMCh of lower DS (DS: 0.8, CMCh-A). Our study provides novel insights and scientific basis for the development of ampholetic polysaccharides as high-performance food additives.


Asunto(s)
Quitosano , Agua , Pan , Congelación , Proteínas
17.
Acad Radiol ; 29(9): 1320-1331, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34896001

RESUMEN

PURPOSE: The purpose of this study was to evaluate the diagnostic performance of single-parameter, unimodal and bimodal magnetic resonance imaging (MRI) in differentiating tumor recurrence (TR) from radiation necrosis (RN) in patients with glioblastoma (GBM) after treatment using diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dynamic susceptibility contrast enhancement-perfusion weighted imaging (DSC-PWI), and proton magnetic resonance spectroscopy (1H-MRS). MATERIALS AND METHODS: Patients with histologically proven GBM who underwent surgical intervention followed by chemoradiotherapy and developed a new, progressively enhanced lesion on follow-up MRI were included in our study. Subsequently, DWI, DTI, DSC-PWI, and 1H-MRS were performed. Then, these patients underwent a second surgical operation or follow-up MRI to prove TR or RN. MRI metrics include apparent diffusion coefficient (ADC) and relative ADC (rADC) values derived from DWI; fractional anisotropy (FA), axial diffusion coefficient (DA) and radial diffusion coefficient (DR) values derived from DTI; and relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) derived from DSC-PWI. Spectral metabolites such as choline (Cho), creatine (Cr), N-acetylaspartate (NAA), lactate (Lac), and lipids (Lip) were derived from MRS, and the ratios of these metabolites were calculated, including Cho/NAA, Cho/Cr, NAA/Cr, Lac/Cr, and Lip/Cr. These indices were compared between the TR group and RN group, and the receiver operating characteristic (ROC) curve was used to evaluate the performance in distinguishing TR from RN by using single-parameter, unimodal and bimodal MRI. RESULTS: There were significant differences between the TR and RN groups in terms of ADC (p = 0.001), rADC (p < 0.001), FA (p = 0.001), DA (p = 0.003), DR (p = 0.003), rCBV (p < 0.001), rCBF (p < 0.001), Cho/NAA (p < 0.001), Lac/Cr (p < 0.001) and Lip/Cr (p < 0.001). ROC analysis suggested that rCBV, MRS, and DSC + MRS were the optimal single-parameter, unimodal, and bimodal MRI classifiers for distinguishing TR from RN, with AUC values of 0.909, 0.940, and 0.994, respectively. CONCLUSION: The combination of parameters based on multiparametric MRI in the region of enhanced lesions is a valuable noninvasive tool for discriminating TR from RN.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imágenes de Resonancia Magnética Multiparamétrica , Traumatismos por Radiación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Colina/metabolismo , Creatina/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Necrosis/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico por imagen , Traumatismos por Radiación/diagnóstico por imagen
18.
Fitoterapia ; 157: 105109, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34954262

RESUMEN

Four new diarylheptanoid glycosides (1-4), (1S,3R,5S)-2-(4-hydroxy-3- methoxyphenyl)-6-[2-(4-hydroxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (1), (1S,3R,5S)-2-(4,5-dihydroxy-3-methoxyphenyl)-6-[2-(4-hydroxyphenyl) ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (2), (1S,3R,5S)-2-(4-hydroxy- 3,5-dimethoxyphenyl)-6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (3), and (1R,3R,5R)-2-(4-hydroxy-3,5-dimethoxyphenyl)- 6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-3-O-ß-D-glucopyranoside (4) were isolated from the 50% ethanol extract of Zingiber officinale peel. The structures of the isolated compounds were determined by HR-ESI-MS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). Compounds 1-4 significantly increased the survival rate of human normal lung bronchial epithelial cells (BEAS-2B) induced by lipopolysaccharide (LPS) at the concentration of 10 µM.


Asunto(s)
Apoptosis/efectos de los fármacos , Diarilheptanoides/farmacología , Glicósidos/farmacología , Zingiber officinale/química , Supervivencia Celular , Diarilheptanoides/química , Diarilheptanoides/aislamiento & purificación , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
19.
Retrovirology ; 18(1): 38, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903241

RESUMEN

BACKGROUND: Prototype foamy virus (PFV) is nonpathogenic complex retroviruses that express a transcriptional transactivator Tas, which is essential for the activity of viral long terminal repeat (LTR) promoter and internal promoter (IP). Tripartite motif-containing protein 28 (Trim28) is well known as a scaffold protein normally enriched in gene promoter region to repress transcription. We sought to determine if whether Trim28 could be enriched in PFV promoter region to participate the establishment of PFV latency infection. RESULTS: In this study, we show that Trim28 restricts Tas-dependent transactivation activity of PFV promoter and negatively regulates PFV replication. Trim28 was found to be enriched in LTR instead of IP promoter regions of PFV genome and contribute to the maintenance of histone H3K9me3 marks on the LTR promoter. Furthermore, Trim28 interacts with Tas and colocalizes with Tas in the nucleus. Besides, we found that Trim28, an E3 ubiquitin ligase, binds directly to and promotes Tas for ubiquitination and degradation. And the RBCC domain of Trim28 is required for the ubiquitination and degradation of Tas. CONCLUSIONS: Collectively, our findings not only identify a host factor Trim28 negatively inhibits PFV replication by acting as transcriptional restriction factor enriched in viral LTR promoter through modulating H3K9me3 mark here, but also reveal that Trim28 mediated ubiquitin proteasome degradation of Tas as a mechanism underlying Trim28 restricts Tas-dependent transcription activity of PFV promoter and PFV replication. These findings provide new insights into the process of PFV latency establishment.


Asunto(s)
Histonas/metabolismo , Spumavirus , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Línea Celular , Humanos , Spumavirus/genética , Secuencias Repetidas Terminales , Transactivadores/genética , Transactivadores/metabolismo , Replicación Viral
20.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5080-5087, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738404

RESUMEN

The present study explored the mechanism of action of Gynostemma pentaphyllum in the treatment of metabolism associa-ted fatty liver disease(MAFLD) by network pharmacology and molecular docking. The main active components and action targets of G. pentaphyllum were collected from TCMSP. Disease-related targets were obtained from GeneCards, OMIM and TTD, and the common targets of the three databases were screened out, which were converted to the genes with standard names by UniProt. The drug-disease common target genes were obtained through Venn tool and uploaded to STRING for the construction of the protein-protein interaction(PPI) network. Cytoscape was used to construct and analyze the drug-active component-common target-disease network. The gene ontology(GO) analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed on the common targets by DAVID. Pymol was adopted to perform molecular docking of active components and the common targets and predict their binding ability. Twenty-four active components(such as gypenosides, quercetin and sitosterol) of G. pentaphyllum were screened out. Ninety-two targets were obtained and 54 common targets were identified. Key targets included TNF, IL6, PTGS2, TP53, CCL2 and VEGFA. GO analysis on biological processes, molecular functions and cellular components and KEGG pathway analysis were performed, and the results indicated that NF-κB, PI3 K-Akt, TNF and HIF-1 signaling pathways were mainly involved. Molecular docking results showed that gypenosides and quercetin had a strong binding ability to TNF, IL6 and PTGS2. The findings of this study revealed that the therapeutic efficacy of G. pentaphyllum on MAFLD might be achieved by resisting inflammation and oxidative stress and improving insulin resistance, providing ideas and a theoretical basis for the development and application of G. pentaphyllum in the treatment of MAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatopatías , Gynostemma , Simulación del Acoplamiento Molecular , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA