Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838492

RESUMEN

Biochar is an important soil amendment that can enhance the biological properties of soil, as well as nitrogen (N) uptake and utilization in N-fertilized crops. However, few studies have characterized the effects of urea and biochar application on soil biochemical traits and its effect on paddy rice. Therefore, a field trial was conducted in the early and late seasons of 2020 in a randomized complete block design with two N levels (135 and 180 kg ha-1) and four levels of biochar (0, 10, 20, and 30 t ha-1). The treatment combinations were as follows: 135 kg N ha-1 + 0 t B ha-1 (T1), 135 kg N ha-1 + 10 t B ha-1 (T2), 135 kg N ha-1 + 20 t B ha-1 (T3), 135 kg N ha-1 + 30 t B ha-1 (T4), 180 kg N ha-1 + 0 t B ha-1 (T5), 180 kg N ha-1 + 10 t B ha-1 (T6), 180 kg N ha-1 + 20 t B ha-1 (T7) and 180 kg N ha-1 + 30 t B ha-1 (T8). The results showed that soil amended with biochar had higher soil pH, soil organic carbon content, total nitrogen content, and mineral nitrogen (NH4+-N and NO3--N) than soil that had not been amended with biochar. In both seasons, the 20 t ha-1 and 30 t ha-1 biochar treatments had the highest an average concentrations of NO3--N (10.54 mg kg-1 and 10.25 mg kg-1, respectively). In comparison to soil that had not been treated with biochar, the average activity of the enzymes urease, polyphenol oxidase, dehydrogenase, and chitinase was, respectively, 25.28%, 14.13%, 67.76%, and 22.26% greater; however, the activity of the enzyme catalase was 15.06% lower in both seasons. Application of biochar considerably increased the abundance of ammonia-oxidizing bacteria (AOB), which was 48% greater on average in biochar-amended soil than in unamended soil. However, there were no significant variations in the abundances of ammonia-oxidizing archaea (AOA) or nitrite-oxidizing bacteria (NOB) across treatments. In comparison to soil that had not been treated with biochar, the average N content was 24.46%, 20.47%, and 19.08% higher in the stem, leaves, and panicles, respectively. In general, adding biochar at a rate of 20 to 30 t ha-1 with low-dose urea (135 kg N ha-1) is a beneficial technique for improving the nutrient balance and biological processes of soil, as well as the N uptake and grain yield of rice plants.

2.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362421

RESUMEN

Rice is a major food crop that produces abundant biomass wastes for biofuels. To improve rice biomass and yield, nitrogen (N) fertilizer is excessively used, which is not eco-friendly. Alternatively, biochar (B) application is favored to improve rice biomass and yield under low chemical fertilizers. To minimize the reliance on N fertilizer, we applied four B levels (0, 10, 20, and 30 t B ha-1) combined with two N rates (low-135 and high-180 kg ha-1) to improve biomass yield. Results showed that compared to control, the combined B at 20-30 t ha-1 with low N application significantly improved plant dry matter and arabinose (Ara%), while decreasing cellulose crystallinity (Crl), degree of polymerization (DP), and the ratio of xylose/arabinose (Xyl/Ara), resulting in high hexoses (% cellulose) and bioethanol yield (% dry matter). We concluded that B coupled with N can alter cell wall polymer features in paddy rice resulting in high biomass saccharification and bioethanol production.


Asunto(s)
Oryza , Biomasa , Nitrógeno , Fertilizantes , Polímeros , Arabinosa , Pared Celular , Celulosa , Suelo
3.
Plants (Basel) ; 11(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235375

RESUMEN

The number of seedlings per hill and the configuration of plant row spacing are important management measures to improve rice yield. In the present study, we evaluated the impact of various seedlings per hill (1, 3, 6, and 9 seedlings hill-1) under four different rice verities (two conventional rice, two hybrid rice) on allometric characteristics, nitrogen use efficiency (NUE) and yield in 2020 at early and late season. Results showed that compared with nine seedlings per hill (wide row spacing), the number of effective panicles, yield, grain biomass allocation, grain-to-leaf ratio, grain nitrogen accumulation, nitrogen dry matter production efficiency (NDMPE), N harvest index (NHI) of 1 seedling per hill increased by 21.8%, 10.91%, 10.5%, 32.25%, 17.03%, 9.67%, 6.5%, respectively. With the increase of seedlings per hill and the expansion of row spacing, stem biomass (SB) and reproductive biomass (RB) increased with the increase of above-ground biomass, mainly showing the relationship of isometric growth. Leaf biomass (LB) increased with above-ground biomass, mainly showing the relationship of allometric growth. The results suggested that under the same basic seedlings, transplanting 1 seedling per hill and dense planting was the most beneficial to improve rice yield.

4.
Front Microbiol ; 13: 856355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910624

RESUMEN

Soil microorganisms play vital roles in energy flow and soil nutrient cycling and, thus, are important for crop production. A detailed understanding of the complex responses of microbial communities to diverse organic manure and chemical fertilizers (CFs) is crucial for agroecosystem sustainability. However, little is known about the response of soil fungal communities and soil nutrients to manure and CFs, especially under double-rice cropping systems. In this study, we investigated the effects of the application of combined manure and CFs to various fertilization strategies, such as no N fertilizer (Neg-CF); 100% chemical fertilizer (Pos-CF); 60% cattle manure (CM) + 40% CF (high-CM); 30% CM + 70% CF (low-CM); 60% poultry manure (PM) + 40% CF (high-PM), and 30% PM + 70% CF (low-PM) on soil fungal communities' structure and diversity, soil environmental variables, and rice yield. Results showed that synthetic fertilizer plus manure addition significantly increased the soil fertility and rice grain yield compared to sole CFs' application. Moreover, the addition of manure significantly changed the soil fungal community structure and increased the relative abundance of fungi such as phyla Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. The relative abundances dramatically differed at each taxonomic level, especially between manured and non-manured regimes. Principal coordinates analysis (PCoA) exhibited greater impacts of the addition of manure amendments than CFs on fungal community distributions. Redundancy analysis showed that the dominant fungal phyla were positively correlated with soil pH, soil organic C (SOC), total N, and microbial biomass C, and the fungal community structure was strongly affected by SOC. Network analysis explored positive relationships between microorganisms and could increase their adaptability in relevant environments. In addition, the structural equation model (SEM) shows the relationship between microbial biomass, soil nutrients, and rice grain yield. The SEM showed that soil nutrient contents and their availability directly affect rice grain yield, while soil fungi indirectly affect grain yield through microbial biomass production and nutrient levels. Our results suggest that manure application combined with CFs altered soil biochemical traits and soil fungal community structure and counteracted some of the adverse effects of the synthetic fertilizer. Overall, the findings of this research suggest that the integrated application of CF and manure is a better approach for improving soil health and rice yield.

5.
Front Plant Sci ; 13: 895230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720563

RESUMEN

Conventional farming systems are highly reliant on chemical fertilizers (CFs), which adversely affect soil quality, crop production and the environment. One of the major current challenges of current agriculture is finding ways to increase soil health and crop yield sustainably. Manure application as a substitute for CF is an alternative fertilization strategy for maintaining soil health and biodiversity. However, little is known about the complex response of soil bacterial communities and soil nutrients to manure and CFs application. This study reports the response of soil nutrients, rice yield, and soil microbial community structure to 2 years of continuous manure and CFs application. The study consisted of six treatments: no N fertilizer control (Neg-Con); 100% CF (Pos-Con); 60% cattle manure (CM) + 40% CF (High-CM); 30% CM + 70% CF (Low-CM); 60% poultry manure (PM) + 40% CF (High-PM), and 30% PM + 70% CF (Low-PM). We used high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize the soil bacterial communities. Results revealed that the addition of manure significantly altered the soil bacterial community composition and structure; and enhanced the relative abundance of phyla Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, and Planctomycetes. Organic fertilizer treatments, particularly high CM and PM had the highest measured soil bacterial diversity of all treatments. Similarly, integrated application of manure and CFs increased the soil biochemical traits [i.e., pH, total N (TN), soil organic C (SOC), microbial biomass N (MBN), and microbial biomass C (MBC)] and rice grain yield. Average increases in SOC, TN, MBN, and MBC were 43.66, 31.57, 24.34, and 49.45%, respectively, over the years in the High-PM compared with Pos-Con. Redundancy analysis showed that the dominant bacteria phyla were correlated with soil pH, SOC, TN, and microbial biomass, but the relative abundance of Proteobacteria was strongly correlated with environmental factors such as soil pH, SOC, TN, and MBC. We employed a structural equation model to examine the relationship between microbial biomass, soil nutrients and grain yield among treatments. This analysis supported the hypothesis that soil nutrient content and availability directly affect rice grain yield while soil bacteria indirectly affect grain yield through microbial biomass production and nutrient levels. Overall, the findings of this research suggest that the integrated application of CF and manure is a better approach for improving soil health and rice yield.

6.
Front Microbiol ; 13: 834751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401466

RESUMEN

Biochar amendment can influence the abundance, activity, and community structure of soil microbes. However, scare information is present about the effect of the combined application of biochar with synthetic nitrogen (N) fertilizer under paddy field condition. We aimed to resolve this research gap in rice field conditions through different biochar in combination with N fertilizers on soil nutrients, soil microbial communities, and rice grain yield. The present study involves eight treatments in the form of biochar (0, 10, 20, and 30 t ha-1) and N (135 and 180 kg ha-1) fertilizer amendments. The soil microbial communities were characterized using high-throughput sequencing of 16S and Internal transcribed spacer (ITS) ribosomal RNA gene amplicons. Experiential findings showed that the treatments had biochar amendments along with N fertilizer significantly advanced soil pH, soil organic carbon (SOC), total nitrogen (TN), soil microbial carbon (SMBC), soil microbial nitrogen (SMBN), and rice grain yield in comparison to sole N application. Furthermore, in comparison with control in the first year (2019), biochar amendment mixed with N fertilizer had more desirable relative abundance of microorganism, phyla Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia with better relative abundance ranging from 8.49, 4.60, 46.30, and 1.51% in T7, respectively. Similarly, during 2020, bacteria phyla Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia were resulted in higher and ranging from 8.69, 5.18, 3.5, 1.9, 4.0, and 1.6%, in biochar applied treatments, respectively, as compared to control (T1). Among the treatments, Sphingopyxis and Thiobacillus bacterial genus were in higher proportion in T7 and T3, respectively, as compared to other treatments and Bacillus was higher in T6. Interestingly, biochar addition significantly decreased the soil fungi phyla Ascomycota, Basidiomycota, Chytridiomycota, and Rozellomycota, in 2020 as compared to 2019. Whereas biochar addition to soil decreased Echria, Kohlmeyeriopsis, and Westerdykella fungal genus as compared to non-biochar treatments. The redundancy analysis showed that soil biochemical traits were positively correlated with soil bacteria. In addition, correlation analysis showed that soil bacteria including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Proteobacteria strongly correlated with rice grain yield. This study demonstrated that soil nutrients and bacteria contribute to an increase in rice yield in combined biochar amendment with lower N treatments.

7.
Foods ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267258

RESUMEN

Improving rice production in modern agriculture relies heavily on the overuse of chemical fertilizer, which adversely affects grain quality. Biochar (BC) application is well known for enhancing rice yield under reduced nitrogen (N) application. Therefore, we conducted a two-year field experiment in 2019 and 2020 to evaluate RVA profile characteristics, grain milling, and appearance qualities under four BC rates (0, 10, 20, 30 t ha-1) in combination with two N levels (135 and 180 kg ha-1). The results showed that BC at 30 t ha-1 along with 135 kg N ha-1 improved rapid visco-analyzer (RVA) profile attributes, including peak viscosity (4081.3), trough viscosity (3168.0), break down (913.3), final viscosity (5135.7), and set back (1967.7). Grain yield, grain rain length, milled rice rate, percent grains with chalkiness, amylose, and starch content were improved by 27%, 23%, 37%, 24%, 14%, and 8%, respectively, in the plots treated with the combination of 30 t BC ha-1 and 180 kg N ha-1. A positive coefficient of correlation was observed in RVA profile, milling, and apparent quality of rice with soil properties. These results suggested that BC at 20 to 30 t ha-1 in combination with 135 kg N ha-1 is a promising option for enhancing grain yield, RVA profile, appearance, and milling quality.

8.
Environ Sci Pollut Res Int ; 26(12): 11710-11718, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30806926

RESUMEN

Great efforts have been devoted to assessing the effects of straw managements on greenhouse gas (GHG) emissions, global warming potential (GWP), and net economic budget in rice monoculture (RM). However, few studies have evaluated the effects of straw managements on GHG emissions and net ecosystem economic budget (NEEB) in integrated rice-crayfish farming (RC). Here, a randomized block field experiment was performed to comprehensively evaluate the effects of aquatic breeding practices (feeding or no feeding of forage) and straw managements (rice straw returning or removal) on soil NH4+-N and NO-3-N contents, redox potential (Eh), CH4 and N2O emissions, GWP, and NEEB of fluvo-aquic paddy soil in a rice-crayfish co-culture system in Jianghan Plain of China. We also compared the differences in CH4 and N2O emissions, GWP, and NEEB between RM and RC. Straw returning significantly increased CH4 and N2O emissions by 34.9-46.1% and 6.2-23.1% respectively compared with straw removal. Feeding of forage decreased CH4 emissions by 13.9-18.7% but enhanced N2O emissions by 24.4-33.2% relative to no feeding. Compared with RM treatment, RC treatment decreased CH4 emissions by 18.1-19.6% but increased N2O emissions by 16.8-21.0%. Moreover, RC treatment decreased GWP by 16.8-22.0% while increased NEEB by 26.9-75.6% relative to RM treatment, suggesting that the RC model may be a promising option for mitigating GWP and increasing economic benefits of paddy fields. However, the RC model resulted in a lower grain yield compared with the RM model, indicating that more efforts are needed to simultaneously increase grain yield and NEEB and decrease GWP under RC model.


Asunto(s)
Agricultura/métodos , Astacoidea/crecimiento & desarrollo , Gases de Efecto Invernadero/análisis , Oryza/crecimiento & desarrollo , Agricultura/estadística & datos numéricos , Animales , Acuicultura/métodos , Acuicultura/estadística & datos numéricos , China , Ecosistema , Granjas , Calentamiento Global , Metano/análisis , Óxido Nitroso/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...