RESUMEN
In the past decade, distributed acoustic sensing (DAS) has enabled many new monitoring applications in diverse fields including hydrocarbon exploration and extraction; induced, local, regional, and global seismology; infrastructure and urban monitoring; and several others. However, to date, the open-source software ecosystem for handling DAS data is relatively immature. Here we introduce DASCore, a Python library for analyzing, visualizing, and managing DAS data. DASCore implements an object-oriented interface for performing common data processing and transformations, reading and writing various DAS file types, creating simple visualizations, and managing file system-based DAS archives. DASCore also integrates with other Python-based tools which enable the processing of massive data sets in cloud environments. DASCore is the foundational package for the broader DAS data analysis ecosystem (DASDAE), and as such its main goal is to facilitate the development of other DAS libraries and applications.
RESUMEN
Although significant advancements have been achieved in lead-tin (Pb-Sn) alloyed perovskite solar cells (PSCs), their power conversion efficiency (PCE) remains inferior to that of their Pb-based counterparts, primarily due to higher open-circuit voltage (Voc) losses and lower fill factors (FFs). Herein, we report both perovskite top and bottom interfacial improvements by incorporating a facile fluorophenylethylammonium iodide (p-FPEAI)/ethyl acetate (EA) solution during the film crystal growth. Based on the analysis of perovskite crystallization, film growth, and strain relaxation, the mechanisms behind these interfacial improvements have been well understood. Furthermore, p-FPEAI could reduce the defect density and nonradiative recombination losses, thus attributing to the improved Voc and FF. Finally, the treated device achieved a PCE of 20.14% with a Voc of up to 0.84 V, which is among the highest reported values so far for Pb-Sn alloyed PSCs without additional precursor additives. In addition, the unencapsulated p-FPEAI-treated device maintained its initial efficiency of approximately 92% after being kept in a nitrogen atmosphere for 1 month, in contrast to the control device which retained only 30% of its initial value. Our findings provide a comprehension for understanding the effect of bulky cations as antisolvents on fabricating highly efficient Pb-Sn alloyed perovskite solar cells.
RESUMEN
Perovskite solar cells (PSCs) based on sputtered nickel oxide (NiOx) hole transport layer have emerged as promising configuration due to their good stability, cost-effectiveness, and scalability. However, the adverse chemical redox reaction at the NiOx/perovskite interface remains an ever-present problem that has not yet been well solved. To address this issue before, the problems that cation deprotonation and iodide oxidation that occurred in precursor solution easily result in the interfacial chemical reaction should be prevented. Hence, we report an efficient strategy to simultaneously suppress the interfacial reaction and stabilize the precursor solution by incorporating a reducing and weakly acidic stabilizer, l-ascorbic acid (l-AA). l-AA can reduce I2 generated in the precursor solution and during the interfacial reaction to I-. Furthermore, the protons ionized by adjacent enol hydroxyl groups in l-AA effectively impede the deprotonation of organic cations in the precursor solution as well as at the NiOx/perovskite interface resulting from the chemical reaction. Attributing to the improved crystallization of the perovskite film and the suppression of the interfacial reaction by l-AA, the inverted PSC based on such good light absorber achieves an impressive power conversion efficiency (PCE) of 22.72% along with a high open-circuit voltage of 1.19 V. Notably, further introducing l-AA into the large-area solar modules by the slot-die coating method in air enables a remarkable PCE of 19.17%, which reaches one of the highest PCEs reported for inverted perovskite solar modules (PSMs) (active area >50 cm2) to date. l-AA located at the buried interface also forms a barrier layer that can prevent undesirable chemical reactions at the NiOx/perovskite interface, significantly enhancing the device stability of solar cells and PSMs. These findings in our work provide important guidance for improving the NiOx/perovskite interface and the fabrication of highly efficient, low-cost, and large-area PSMs.
RESUMEN
Many real-world problems can be classified as multimodal optimization problems (MMOPs), which require to locate global optima as more as possible and refine the accuracy of found optima as high as possible. When dealing with MMOPs, how to divide population and obtain effective niches is a key to balance population diversity and convergence during evolution. In this paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy (SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population reasonably by using the similarity information among different individuals. Secondly, a variable neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance exploration and exploitation of the population by taking advantages of both local search strategy and global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal optimization algorithms on benchmark CEC'2013. The experimental results show that SOMDE-DS is superior or competitive with the compared algorithms.
Asunto(s)
Algoritmos , Solución de Problemas , HumanosRESUMEN
Tin (Sn)-based perovskite solar cells (PSCs) have attracted much attention because they are more environmentally friendly than lead-based PSCs. However, the fast crystallization of Sn-based perovskite films and the easy oxidation of Sn2+ to Sn4+ hinder the improvement of their efficiency and stability. In this work, ethylammonium bromide (EABr) was added to methylammonium tin iodide (MASnI3) perovskite precursor solution to regulate the crystallization dynamics and improve the film morphology. The results show that the large EA+ ions slow down the crystallization process of Sn-based perovskites and form a smooth perovskite film with high crystallinity, while the added Br- anions further improved the crystallinity and orientation of the perovskite film. Under the combined action of EA+ and Br- ions, the as-produced PSCs achieved a champion power conversion efficiency (PCE) of 9.59%. The EABr additive also retarded the oxidation of Sn2+, and the solar cell device maintained 93% of its initial efficiency after 30 days in a nitrogen-filled glove box without being encapsulated. This work provides a new strategy for the realization of high-efficiency Sn-based PSCs.
RESUMEN
Despite two-dimensional (2D) Ruddlesden-Popper-phase layered perovskites (RPLPs) exhibiting excellent environmental stability, most solar cells based on 2D RPLP films are fabricated in a controlled inert atmosphere. Meanwhile, the poor charge transport of 2D RPLP films owing to the unfavorable phase arrangement and defects limits the efficiency of 2D RPLP solar cells. Here, we fabricate high-efficiency 2D RPLP solar cells in ambient air assisted by a zwitterion (ZW) additive. We show that the ZW additive suppresses the formation of the bottom 2D phases (n ≤ 2) and the top 3D-like phases in 2D RPLP films. These 2D phases usually grow parallel to the substrate and act as trap sites that inhibit charge transport in the vertical direction. The 3D-like phases, on the other hand, aggravate the long-term stability due to the intrinsic instability of MA+ cations. With improved phase distribution, crystal orientation, and reduced trap states in 2D RPLP films, efficient charge transport is obtained. Finally, a record-high open-circuit voltage (Voc) of 1.19 V and a power conversion efficiency of 17.04% with an enhanced stability are achieved for (BA0.9PEA0.1)2MA3Pb4I13-based (n = 4) solar cells fabricated under high humidity (â¼65% RH).
RESUMEN
The inorganic CsPbI3 perovskite has attracted tremendous attention in the photovoltaic fields for its chemical stability and suitable band gap. Generally, CsPbI3 solar cells with decent performances adopted high annealing temperature to form high-quality black-phase perovskite films. The high-temperature process hinders its practical application and further development. Hence, fabricating stable black-phase CsPbI3 at low temperature is imperative and necessary. In this work, a new additive p-xylilenediamine bromide (PhDMADBr) is reported to facilitate the synthesis of solution-processed, high-quality, and stable γ-CsPbI3 films at a surprisingly low temperature of 60 °C. The additive with an appropriate content can effectively improve both the film morphology and crystallinity of γ-CsPbI3 perovskite films. PhDMADBr anchors to the perovskite surface or grain boundaries as a protection through hydrogen bonding between its ammonium cations and CsPbI3. In addition, the Br element introduced by the additive passivates I- vacancies in perovskite films, resulting in the improvement of both phase stability and devices' performance. Finally, the PSCs based on the modified γ-CsPbI3 perovskite film achieve a champion efficiency of 12.71%. Moreover, the device retains 85% of its original efficiency after being kept for 1000 h.
RESUMEN
Recent progress in rotational sensor technology has made it possible to directly measure rotational ground-motion induced by seismic waves. When combined with conventional inertial seismometer recordings, the new sensors allow one to locally observe six degrees of freedom (6DOF) of ground-motion, composed of three orthogonal components of translational motion and three orthogonal components of rotational motion. The applications of such 6DOF measurements are manifold-ranging from wavefield characterization, separation, and reconstruction to the reduction of non-uniqueness in seismic inverse problems-and have the potential to revolutionize the way seismic data are acquired and processed. However, the seismological community has yet to embrace rotational ground-motion as a new observable. The aim of this paper is to give a high-level introduction into the field of 6DOF seismology using illustrative examples and to summarize recent progress made in this relatively young field. It is intended for readers with a general background in seismology. In order to illustrate the seismological value of rotational ground-motion data, we provide the first-ever 6DOF processing example of a teleseismic earthquake recorded on a multicomponent ring laser observatory and demonstrate how wave parameters (phase velocity, propagation direction, and ellipticity angle) and wave types of multiple phases can be automatically estimated using single-station 6DOF processing tools. Python codes to reproduce this processing example are provided in an accompanying Jupyter notebook.
RESUMEN
Steering the crystallization of two-dimensional (2D) perovskite film is an important strategy to improve the power conversion efficiency (PCE) of 2D perovskite solar cells (PVSCs). In this paper, the deionized water (H2O) additive is introduced into the perovskite precursor solution to prepare high-quality 2D perovskite films. The 2D perovskite film treated with 3% H2O shows a good surface morphology, increased crystal size, enhanced crystallinity, preferred orientation, and low defect density. The fabricated 2D PVSC with 3% H2O exhibits a higher PCE compared with that without H2O (12.15% vs 2.29%). Furthermore, the shelf stability of unsealed devices with 3% H2O under ambient environment is significantly improved. This work provides a simple method to prepare high-quality 2D perovskite films for efficient and stable 2D PVSCs.
RESUMEN
An ideal photodetector must exhibit a fast and wide tunable spectral response, be highly responsive, have low power consumption, and have a facile fabrication process. In this work, a self-powered photodetector with a graphene electrode and a perovskite photoactive layer is assembled for the first time. The graphene electrode is prepared using a solution transfer process, and the perovskite layer is prepared using a solution coating process, which makes the device low cost. Graphene can form a Schottky junction with TiO2 to efficiently separate/transport photogenerated excitons at the graphene/perovskite interface. Unlike the conventional photovoltaic structure, in this photodetector, both photogenerated electrons and holes are transported along the same direction to graphene, and electrons tunneled into TiO2 are collected by the cathode and holes transported by graphene are collected by the anode; therefore, the photodetector is self-powered. The photodetector has a broad range of detection, from 260 to 900 nm, an ultrahigh on-off ratio of 4 × 106, rapid response to light on-off (<5 ms), and a high level of detection of â¼1011 Jones. The high performance is primarily due to the unique charge-transport property of graphene and strong light absorption properties of perovskite. This work suggests a new method for the production of self-powered photodetectors with high performance and low power consumption on a large scale.