Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 346: 112149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851591

RESUMEN

TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins belong to the Groucho (Gro)/Tup1 family co-repressors and act as broad co-repressors that modulate multiple phytohormone signalling pathways and various developmental processes in plant. However, TPL/TPR co-repressors so far are poorly understood in the rapeseed, one of the world-wide important oilseed crops. In this study, we comprehensively characterized eighteen TPL/TPR genes into five groups in the rapeseed genome. Members of TPL/TPR1/TPR4 and TPR2/TPR3 had close evolutionary relationship, respectively. All TPL/TPRs had similar expression patterns and encode conserved protein domain. In addition, we demonstrated that BnaA9.TPL interacted with all known plant repression domain (RD) sequences, which were distributed in non-redundant 24,238 (22.6 %) genes and significantly enriched in transcription factors in the rapeseed genome. These transcription factors were largely co-expressed with the TPL/TPR genes and involved in diverse pathway, including phytohormone signal transduction, protein kinases and circadian rhythm. Furthermore, BnaA9.TPL was revealed to regulate apical embryonic fate by interaction with Bna.IAA12 and suppression of PLETHORA1/2. BnaA9.TPL was also identified to regulate leaf morphology by interaction with Bna.AS1 (Asymmetric leaves 1) and suppression of KNOTTED-like homeobox genes and YABBY5. These data not only suggest the rapeseed TPL/TPRs play broad roles in different processes, but also provide useful information to uncover more TPL/TPR-mediated control of plant development in rapeseed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Filogenia , Genoma de Planta
2.
Plant Physiol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875008

RESUMEN

Maintenance and homeostasis of the quiescent center (QC) in Arabidopsis (Arabidopsis thaliana) root apical meristems are critical for stem cell organization and root development. Despite great progress in relevant research, the molecular mechanisms that determine the root stem cell fate and QC still need further exploration. In Arabidopsis, SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that represses flowering by transcriptional activation of FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway, and EARLY BOLTING IN SHORT DAYS (EBS) is a bivalent histone reader that prevents premature flowering. Here, we found that SUF4 directly interacts with EBS in vivo and in vitro. Loss of function of SUF4 and/or EBS resulted in disorganization of the QC, aberrant cell division, and stunted root growth. RNA-seq and reverse transcription quantitative real-time polymerase chain reaction analysis revealed that SUF4 and EBS coregulate many root development-related genes. A series of biochemical analyses demonstrated that SUF4 directly binds to the promoter of SCARECROW (SCR), which encodes a key regulator of root development. Chromatin immunoprecipitation assay indicated that both SUF4 and EBS are recruited to the SCR locus in an interdependent manner to promote H3K4me3 levels and suppress H3K27me3 levels, thereby activating the expression of SCR. These findings improve our understanding of the function of SUF4 and EBS and provide insights into the molecular mechanism that couples a transcription factor and a histone methylation reader to modulate QC specification and root development in Arabidopsis.

3.
Int J Biol Macromol ; 263(Pt 2): 130471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417753

RESUMEN

Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific transcription factor that play a crucial role in plant growth, development, and stress response. However, the evolutionary relationship of the PLATZ gene family across the Populus genus and the biological functions of the PLATZ protein require further investigation. In this study, we identified 133 PLATZ genes from six Populus species belonging to four Populus sections. Synteny analysis of the PLATZ gene family indicated that whole genome duplication events contributed to the expansion of the PLATZ family. Among the nine paralogous pairs, the protein structure of PtrPLATZ14/18 pair exhibited significant differences with others. Through gene expression patterns and co-expression networks, we discovered divergent expression patterns and sub-networks, and found that the members of pair PtrPLATZ14/18 might play different roles in the regulation of macromolecule biosynthesis and modification. Furthermore, we found that PtrPLATZ14 regulates poplar leaf development by affecting cell size control genes PtrGRF/GIF and PtrTCP. In conclusion, our study provides a theoretical foundation for exploring the evolution relationships and functions of the PLATZ gene family within Populus species and provides insights into the function and potential mechanism of PtrPLATZ14 in leaf morphology that were diverse across the Populus genus.


Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes , Filogenia , Populus/genética , Populus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química
4.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139079

RESUMEN

SECRETORY13 (SEC13) is an essential member of the coat protein complex II (COPII), which was reported to mediate vesicular-specific transport from the endoplasmic reticulum (ER) to the Golgi apparatus and plays a crucial role in early secretory pathways. In Arabidopsis, there are two homologous proteins of SEC13: SEC13A and SEC13B. SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that inhibits flowering by transcriptionally activating the FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway in Arabidopsis. However, it remains unclear whether SEC13 proteins are involved in Arabidopsis flowering. In this study, we first identified that the sec13b mutant exhibited early flowering under both long-day and short-day conditions. Quantitative real-time PCR (qRT-PCR) analysis showed that both SEC13A and SEC13B were expressed in all the checked tissues, and transient expression assays indicated that SEC13A and SEC13B were localized not only in the ER but also in the nucleus. Then, we identified that SEC13A and SEC13B could interact with SUF4 in vitro and in vivo. Interestingly, both sec13b and suf4 single mutants flowered earlier than the wild type (Col-0), whereas the sec13b suf4 double mutant flowered even earlier than all the others. In addition, the expression of flowering inhibitor FLC was down-regulated, and the expressions of flowering activator FLOWERING LOCUS T (FT), CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) were up-regulated in sec13b, suf4, and sec13b suf4 mutants, compared with Col-0. Taken together, our results indicated that SEC13B interacted with SUF4, and they may co-regulate the same genes in flowering-regulation pathways. These results also suggested that the COPII component could function in flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Mutación
5.
New Phytol ; 239(6): 2248-2264, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488708

RESUMEN

Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.


Asunto(s)
Populus , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo
6.
J Adv Res ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399924

RESUMEN

INTRODUCTION: Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES: In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS: We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS: Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION: Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.

7.
Front Microbiol ; 13: 1018504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246279

RESUMEN

Pathogens are important threats to many plants throughout their lifetimes. Plants have developed different strategies to overcome them. In the plant immunity system, nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) are the most common components. And recent studies have greatly expanded our understanding of how NLRs function in plants. In this review, we summarize the studies on the mechanism of NLRs in the processes of effector recognition, resistosome formation, and defense activation. Typical NLRs are divided into three groups according to the different domains at their N termini and function in interrelated ways in immunity. Atypical NLRs contain additional integrated domains (IDs), some of which directly interact with pathogen effectors. Plant NLRs evolve with pathogen effectors and exhibit specific recognition. Meanwhile, some NLRs have been successfully engineered to confer resistance to new pathogens based on accumulated studies. In summary, some pioneering processes have been obtained in NLR researches, though more questions arise as a result of the huge number of NLRs. However, with a broadened understanding of the mechanism, NLRs will be important components for engineering in plant resistance improvement.

8.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805982

RESUMEN

VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1) encodes a DNA-binding B3 domain protein and plays essential roles in seed maturation and flowering transition by repressing genes through epigenetic silencing in Arabidopsis. SWI-INDEPENDENT3 (SIN3)-LIKEs (SNLs), which encode scaffold proteins for the assembly of histone deacetylase complexes and have six SIN3 homologues (SNL1-SNL6) in Arabidopsis thaliana, directly repress gene expression to regulate seed maturation and flowering transition. However, it remains unclear whether VAL1 and SNLs work together in repressing the expression of related genes. In this study, yeast two-hybrid and firefly luciferase complementation imaging assays revealed that VAL1 interacts with SNLs, which can be attributed to its own zinc-finger CW (conserved Cys (C) and Trp (W) residues) domain and the PAH (Paired Amphipathic Helices) domains of SNLs. Furthermore, pull-down experiments confirmed that the CW domain of VAL1 interacts with both intact protein and the PAH domains of SNLs proteins, and the co-immunoprecipitation assays also confirmed the interaction between VAL1 and SNLs. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that VAL1 and SNLs were expressed in seedlings, and transient expression assays showed that VAL1 and SNLs were localized in the nucleus. Considered together, these results reveal that VAL1 physically interacts with SNLs both in vitro and in vivo, and suggest that VAL1 and SNLs may work together to repress the expression of genes related to seed maturation and flowering transition in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Front Genet ; 13: 878554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846114

RESUMEN

The WUSCHEL-related homeobox (WOX) proteins are widely distributed in plants and play important regulatory roles in growth and development processes such as embryonic development and organ development. Here, series of bioinformatics methods were utilized to unravel the structural basis and genetic hierarchy of WOX genes, followed by regulation of the WOX genes in four Euphorbiaceae species. A genome-wide survey identified 59 WOX genes in Hevea brasiliensis (H. brasiliensis: 20 genes), Jatropha curcas (J. curcas: 10 genes), Manihot esculenta (M. esculenta: 18 genes), and Ricinus communis (R. communis: 11 genes). The phylogenetic analysis revealed that these WOX members could be clustered into three close proximal clades, such as namely ancient, intermediate and modern/WUS clades. In addition, gene structures and conserved motif analyses further validated that the WOX genes were conserved within each phylogenetic clade. These results suggested the relationships among WOX members in the four Euphorbiaceae species. We found that WOX genes in H. brasiliensis and M. esculenta exhibit close genetic relationship with J. curcas and R. communis. Additionally, the presence of various cis-acting regulatory elements in the promoter of J. curcas WOX genes (JcWOXs) reflected distinct functions. These speculations were further validated with the differential expression profiles of various JcWOXs in seeds, reflecting the importance of two JcWOX genes (JcWOX6 and JcWOX13) during plant growth and development. Our quantitative real-time PCR (qRT-PCR) analysis demonstrated that the JcWOX11 gene plays an indispensable role in regulating plant callus. Taken together, the present study reports the comprehensive characteristics and relationships of WOX genes in four Euphorbiaceae species, providing new insights into their characterization.

10.
Plant J ; 111(4): 1167-1182, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765202

RESUMEN

As a multigenic trait, rice tillering can optimize plant architecture for the maximum agronomic yield. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE14 (OsSPL14) has been demonstrated to be necessary and sufficient to inhibit rice branching, but the underlying mechanism remains largely unclear. Here, we demonstrated that OsSPL14, which is cleaved by miR529 and miR156, inhibits tillering by fine-tuning auxin transport in rice. RNA interference of OsSPL14 or miR529 and miR156 overexpression significantly increased the tiller number, whereas OsSPL14 overexpression decreased the tiller number. Histological analysis revealed that the OsSPL14-overexpressing line had normal initiation of axillary buds but inhibited outgrowth of tillers. Moreover, OsSPL14 was found to be responsive to indole-acetic acid and 1-naphthylphthalamic acid, and RNA interference of OsSPL14 reduced polar auxin transport and increased 1-naphthylphthalamic acid sensitivity of rice plants. Further analysis revealed that OsSPL14 directly binds to the promoter of PIN-FORMED 1b (OsPIN1b) and PIN-LIKE6b (PILS6b) to regulate their expression positively. OsPIN1b and PILS6b were highly expressed in axillary buds and proved involved in bud outgrowth. Loss of function of OsPIN1b or PILS6b increased the tiller number of rice. Taken together, our findings suggested that OsSPL14 could control axillary bud outgrowth and tiller number by activating the expression of OsPIN1b and PILS6b to fine-tune auxin transport in rice.


Asunto(s)
Oryza , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Commun ; 3(3): 100318, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35576155

RESUMEN

Xanthomonas species colonize many host plants and cause huge losses worldwide. Transcription activator-like effectors (TALEs) are secreted by Xanthomonas and translocated into host cells to manipulate the expression of target genes, especially by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, which cause bacterial blight and bacterial leaf streak, respectively, in rice. In this review, we summarize the progress of studies on the interaction between Xanthomonas and hosts, covering both rice and other plants. TALEs are not only key factors that make plants susceptible but are also essential components of plant resistance. Characterization of TALEs and TALE-like proteins has improved our understanding of TALE evolution and promoted the development of gene editing tools. In addition, the interactions between TALEs and hosts have also provided strategies and possibilities for genetic engineering in crop improvement.


Asunto(s)
Interacciones Huésped-Patógeno , Oryza , Efectores Tipo Activadores de la Transcripción , Xanthomonas , Interacciones Huésped-Patógeno/genética , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo
13.
Plant Physiol ; 188(1): 460-476, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34730827

RESUMEN

Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.


Asunto(s)
Meristema/genética , Meristema/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Metilación/efectos de los fármacos , Plantas Modificadas Genéticamente
14.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884626

RESUMEN

Root-derived mobile signals play critical roles in coordinating a shoot's response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Nicotiana/genética , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo
15.
Ecotoxicol Environ Saf ; 224: 112667, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34425536

RESUMEN

Cadmium is a severe environmental pollutant that mainly targets kidney and causes kidney disease in the end. However, the mechanism of cadmium-induced kidney disease is still unclear. In this study, we treated SD rats, kidney epithelial or fibroblast cells with cadmium, and examined the renal fibrosis process and underlying cellular and molecular mechanism. Rats received daily (Monday-Friday) subcutaneous injections of CdCl2, 0.6 mg/kg, for 6 weeks or 12 weeks, and NRK-52E cells were treated with CdCl2 of 8 µM for 24 h. Sirius red staining and immunohistochemistry assay showed that sub-chronic exposure to cadmium caused interstitial fibrosis in rat kidneys. Cell experiments showed that cadmium treatment in NRK-52E cells only changed levels of α-SMA, vimentin and E-cadherin, but not collagen1, indicating that cells other than EMT cells might be responsible for the extracellular matrix production. By contrast, co-culture of NRK-49F cells with cadmium-treated NRK-52E cells produced collagen1. Assays of supernatant of NRK-52E cell culture showed that the secreted Wnt1, Wnt4 were increased, while miR-503-5p was decreased by cadmium treatment. RT-QPCR assay found that miR-503-5p was downregulated in both kidney of rats and NRK-52E cells exposed to cadmium. miR-503-5p was further shown to be competent in hindering epithelial-mesenchymal transition and fibroblast activation. Given the well established involvement of Wnt/ß-catenin pathway in fibrosis, this study suggested that dysregulations of Wnts and miR-503-5p coordinate in mediating cadmium-induced kidney fibrosis. Our findings might provide new insight in the cellular and molecular mechanisms of kidney interstitial fibrosis and novel therapeutic targets for cadmium-induced kidney disease.

16.
Int J Biol Macromol ; 181: 1207-1223, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33971233

RESUMEN

The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sequías , Jatropha/genética , Estrés Salino/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Jatropha/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética
17.
Rice (N Y) ; 13(1): 80, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284383

RESUMEN

BACKGROUND: As rice (Oryza sativa) is the staple food of more than half the world's population, rice production contributes greatly to global food security. Rice blast caused by the fungus Magnaporthe oryzae (M. oryzae) is a devastating disease that affects rice yields and grain quality, resulting in substantial economic losses annually. Because the fungus evolves rapidly, the resistance conferred by most the single blast-resistance genes is broken after a few years of intensive agricultural use. Therefore, effective resistance breeding in rice requires continual enrichment of the reservoir of resistance genes, alleles, or QTLs. Seed banks represent a rich source of genetic diversity; however, they have not been extensively used to identify novel genes and alleles. RESULTS: We carried out a large-scale screen for novel blast-resistance alleles in 1883 rice varieties from major rice-producing areas across China. Of these, 361 varieties showed at least moderate resistance to natural infection by rice blast at rice blast nurseries in Enshi and Yichang, Hubei Province. We used sequence-based allele mining to amplify and sequence the allelic variants of the major rice blast-resistance genes at the Pi2/Pi9 locus of chromosome 6 from the 361 blast-resistant varieties, and the full-length coding region of this gene could be amplified from 107 varieties. Thirteen novel Pi9 alleles (named Pi9-Type1 to Pi9-Type13) were identified in these 107 varieties based on comparison to the Pi9 referenced sequence. Based on the sequencing results, the Pi2/Pi9 locus of the 107 varieties was divided into 15 genotypes (including three different genotypes of Pi9-Type5). Fifteen varieties, each representing one genotype, were evaluated for resistance to 34 M. oryzae isolates. The alleles from seven varieties with the highest resistance and widest resistance spectra were selected for transformation into the susceptible variety J23B to construct near-isogenic lines (NILs). These NILs showed resistance in a field test in Enshi and Yichang, indicating that the seven novel rice blast-resistance tandem-repeat regions at the Pi2/Pi9 locus of chromosome 6 could potentially serve as a genetic resource for molecular breeding of resistance to rice blast. CONCLUSIONS: The thirteen novel Pi9 alleles identified in this study expand the list of available of blast-resistance alleles. Seven tandem-repeat regions of the Pi2/Pi9 locus from different donors were characterized as broad-spectrum rice blast-resistance fragments; these donors enrich the genetic resources available for rice blast-resistance breeding programs.

18.
Environ Toxicol ; 35(12): 1334-1342, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32697411

RESUMEN

Cadmium is a toxic heavy metal distributed broadly in the environment and manufactory industry. Long-term exposure to cadmium, considered as a risk for kidney injury, leads to chronic kidney disease eventually. Phospholipase D1 (PLD1) promotes cell proliferation and inhibits apoptosis, and might be involved in cadmium-induced kidney injury. In this study, we used miRNA microarray assays and bioinformatics analysis to identify miRNAs, which may regulate PLD1 expression and exert an impact on cadmium-induced kidney injury. MiR-122-5p and miR-326-3p,selected as candidates, were explored for their regulatory functions in kidney injury, using NRK-52E cells. Both of these two miRNAs exhibited higher expression in kidneys of SD rats after exposure to cadmium for 6 weeks. Cadmium treatment also increased miR-122-5p and miR-326-3p and decreased PLD1 in NRK-52E cells. Both of miR-122-5p and miR-326-3p could downregulate PLD1 expression through targeting its 3'UTR and enhance cadmium-induced apoptosis, while inhibiting either of these two miRNAs could reverse such effects. In conclusion, our results suggest that miR-122-5p and miR-326-3p might enhance cadmium-induced NRK-52E cell apoptosis through downregulating PLD1 expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadmio/toxicidad , Células Epiteliales/efectos de los fármacos , MicroARNs/genética , Fosfolipasa D/genética , Regiones no Traducidas 3' , Animales , Apoptosis/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley
19.
Biomed Res Int ; 2020: 7091053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337269

RESUMEN

Exposure to cadmium (Cd), a common heavy metal used in industry, can result in long-term chronic toxicity. It has been well characterized that kidneys are the main organs that are targeted by toxicity, which can cause apoptosis, necrosis, and atrophy of renal tubular epithelial cells. However, the molecular mechanisms associated with Cd toxicity remain unclear. In this study, the expression of renal proteins in Sprague-Dawley rats exposed to chronic Cd was analyzed with iTRAQ proteomics. Bioinformatics analysis indicated that phospholipase D1 (PLD1) was significantly underexpressed and may correlate strongly with Cd-induced chronic kidney impairment. Previous studies have shown that PLD1 promotes cell proliferation and inhibits apoptosis, indicating that PLD1 may be implicated in the pathogenesis of kidney injury induced by Cd. Studies in vivo and in vitro all demonstrate that the mRNA and protein levels of PLD1 decrease significantly both in kidney tissue and in proximal tubular cell lines exposed to Cd. Overexpression of PLD1 and its downstream product PA could ameliorate Cd-induced apoptosis. Moreover, we identified that miR-122-5p was a regulatory miRNA of PLD1. miR-122-5p was overexpressed after Cd exposure and promoted cell apoptosis by downregulating PLD1 through binding the 3'UTR of the locus at 1761-1784 nt. In conclusion, our results indicated that PLD1 and its downstream PA were strongly implicated in Cd-induced chronic kidney impairment and could be a novel player in the defense against Cd-induced nephrotoxicity.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadmio/toxicidad , Riñón/efectos de los fármacos , Fosfolipasa D/genética , Insuficiencia Renal/tratamiento farmacológico , Regiones no Traducidas 3' , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Riñón/citología , Riñón/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Fosfolipasa D/metabolismo , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal/etiología
20.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024128

RESUMEN

MYB transcription factors (TFs) are one of the largest TF families in plants to regulate numerous biological processes. However, our knowledge of the MYB family in Physcomitrella patens is limited. We identified 116 MYB genes in the P. patens genome, which were classified into the R2R3-MYB, R1R2R3-MYB, 4R-MYB, and MYB-related subfamilies. Most R2R3 genes contain 3 exons and 2 introns, whereas R1R2R3 MYB genes contain 10 exons and 9 introns. N3R-MYB (novel 3RMYB) and NR-MYBs (novel RMYBs) with complicated gene structures appear to be novel MYB proteins. In addition, we found that the diversity of the MYB domain was mainly contributed by domain shuffling and gene duplication. RNA-seq analysis suggested that MYBs exhibited differential expression to heat and might play important roles in heat stress responses, whereas CCA1-like MYB genes might confer greater flexibility to the circadian clock. Some R2R3-MYB and CCA1-like MYB genes are preferentially expressed in the archegonium and during the transition from the chloronema to caulonema stage, suggesting their roles in development. Compared with that of algae, the numbers of MYBs have significantly increased, thus our study lays the foundation for further exploring the potential roles of MYBs in the transition from aquatic to terrestrial environments.


Asunto(s)
Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Factores de Transcripción/genética , Bryopsida/metabolismo , Duplicación de Gen , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...