Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 921: 171098, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387572

RESUMEN

Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Transcriptoma , Epigenoma , Aclimatación/fisiología , Cambio Climático , Larva , Arrecifes de Coral
2.
Mol Ecol ; 32(5): 1098-1116, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528869

RESUMEN

Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.


Asunto(s)
Antozoos , Termotolerancia , Animales , Antozoos/genética , Arrecifes de Coral , Larva , Termotolerancia/genética , Aclimatación , Simbiosis
3.
Sci Total Environ ; 842: 156851, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750167

RESUMEN

The successful dispersal of coral larvae is vital to the population replenishment and reef recovery and resilience. Despite that this critical early stage is susceptible to ocean warming and acidification, little is known about the responses of coral larvae to warming and acidification across different biological scales. This study explored the influences of elevated temperature (29 °C versus 33 °C) and pCO2 (500 µatm versus 1000 µatm) on brooded larvae of Pocillopora damicornis at the organismal, cellular and gene expression levels. Heat stress caused bleaching, depressed light-enhanced dark respiration, photosynthesis and autotrophy, whereas high pCO2 stimulated photosynthesis. Although survival was unaffected, larvae at 33 °C were ten-times more likely to settle than those at 29 °C, suggesting reduced capacity to disperse and differentiate suitable substrate. Remarkably, heat stress induced greater symbiont loss at ambient pCO2 than at high pCO2, while cell-specific pigment concentrations of symbionts at 33 °C increased twofold under ambient pCO2 relative to high pCO2, suggesting pCO2-dependent bleaching patterns. Considerable increases in activities of host antioxidants superoxide dismutase (SOD) and catalase (CAT) at 33 °C indicated oxidative stress, whereas lipid peroxidation and caspase activities were contained, thereby restraining larval mortality at 33 °C. Furthermore, the coral host mounted stronger transcriptional responses than symbionts. High pCO2 stimulated host metabolic pathways, possibly because of the boosted algal productivity. In contrast, host metabolic processes and symbiont photosystem genes were downregulated at 33 °C. Interestingly, the upregulation of extracellular matrix genes and glycosaminoglycan degradation pathway at 33 °C was more evident under ambient pCO2 than high pCO2, suggesting compromised host tissue integrity that could have facilitated symbiont expulsion and bleaching. Our results provide insights into how coral larvae respond to warming and acidification at different levels of biological organization, and demonstrate that ocean acidification can mediate thermal bleaching and gene expression in coral larvae under heat stress.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Expresión Génica , Respuesta al Choque Térmico , Concentración de Iones de Hidrógeno , Larva , Océanos y Mares , Agua de Mar
4.
Front Physiol ; 9: 1952, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30692940

RESUMEN

Diurnal pCO2 fluctuations have the potential to modulate the biological impact of ocean acidification (OA) on reef calcifiers, yet little is known about the physiological and biochemical responses of scleractinian corals to fluctuating carbonate chemistry under OA. Here, we exposed newly settled Pocillopora damicornis for 7 days to ambient pCO2, steady and elevated pCO2 (stable OA) and diurnally fluctuating pCO2 under future OA scenario (fluctuating OA). We measured the photo-physiology, growth (lateral growth, budding and calcification), oxidative stress and activities of carbonic anhydrase (CA), Ca-ATPase and Mg-ATPase. Results showed that while OA enhanced the photochemical performance of in hospite symbionts, it also increased catalase activity and lipid peroxidation. Furthermore, both OA treatments altered the activities of host and symbiont CA, suggesting functional changes in the uptake of dissolved inorganic carbon (DIC) for photosynthesis and calcification. Most importantly, only the fluctuating OA treatment resulted in a slight drop in calcification with concurrent up-regulation of Ca-ATPase and Mg-ATPase, implying increased energy expenditure on calcification. Consequently, asexual budding rates decreased by 50% under fluctuating OA. These results suggest that diel pCO2 oscillations could modify the physiological responses and potentially alter the energy budget of coral recruits under future OA, and that fluctuating OA is more energetically expensive for the maintenance of coral recruits than stable OA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...