Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 205: 116590, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878419

RESUMEN

The Beibu Gulf has experienced blooms of Phaeocystis globosa "giant colony" ecotype (PGGCE), with noticeable variations in bloom scale across years. However, driving environmental factors and their roles remain poorly understood. In this study, we quantified dynamics of PGGCE cells in 2016-2017 and 2018-2019, and analyzed their correlations with environment factors. The results revealed that PGGCE blooms primarily occurred in Guangxi coast and western waters of Leizhou Peninsula during winter months, exhibiting distinct developmental processes. Bloom intensity, duration, and distribution differed significantly between two bloom events. In 2016-2017, peak PGGCE density exceeded 2.0 × 105 cells L-1 nearly double that of 2018-2019. Furthermore, bloom sustained five months during 2016-2017, compared to three months during 2018-2019. Prolonged period of low temperatures and elevated nitrate concentrations favored PGGCE growth and colony formation, resulting in a larger scale bloom during winter 2016 as opposed to winter 2018.

2.
Mar Pollut Bull ; 205: 116617, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917494

RESUMEN

Excessive nitrate input is one of the primary factors causing nearshore eutrophication. This study applied the nitrate stable isotope techniques to analyse the biogeochemical processes and sources of nitrate in the Bohai Sea (BHS). The results showed that intensive NO3- assimilation probably occurred at surface in summer, while nitrification primarily occurred in the Yellow River diluted water. In autumn, regional assimilation and nitrification were still identified. For avoiding the interference from assimilation, the isotopic fractionations were further calculated as correction data for the quantitative analysis of nitrate sources. The river inputs were identified as the primary source of nitrate in the BHS in summer and autumn, accounting for >50 %, and the atmospheric deposition was the secondary source. This study provides quantitative data for evaluating the significance of river inputs to the nearshore nitrate, which will be beneficial to policy formulation on the BHS eutrophication control.

3.
Ecol Evol ; 13(5): e10127, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37223313

RESUMEN

Harmful algal blooms (HABs) have occurred more frequently in recent years. In this study, to investigate their potential impact in the Beibu Gulf, short-read and long-read metabarcoding analyses were combined for annual marine phytoplankton community and HAB species identification. Short-read metabarcoding showed a high level of phytoplankton biodiversity in this area, with Dinophyceae dominating, especially Gymnodiniales. Multiple small phytoplankton, including Prymnesiophyceae and Prasinophyceae, were also identified, which complements the previous lack of identifying small phytoplankton and those unstable after fixation. Of the top 20 phytoplankton genera identified, 15 were HAB-forming genera, which accounted for 47.3%-71.5% of the relative abundance of phytoplankton. Based on long-read metabarcoding, a total of 147 OTUs (PID > 97%) belonging to phytoplankton were identified at the species level, including 118 species. Among them, 37 species belonged to HAB-forming species, and 98 species were reported for the first time in the Beibu Gulf. Contrasting the two metabarcoding approaches at the class level, they both showed a predominance of Dinophyceae, and both included high abundances of Bacillariophyceae, Prasinophyceae, and Prymnesiophyceae, but the relative contents of the classes varied. Notably, the results of the two metabarcoding approaches were quite different below the genus level. The high abundance and diversity of HAB species were probably due to their special life history and multiple nutritional modes. Annual HAB species variation revealed in this study provided a basis for evaluating their potential impact on aquaculture and even nuclear power plant safety in the Beibu Gulf.

4.
Harmful Algae ; 124: 102407, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164562

RESUMEN

The haptophyceae Phaeocystis globosa is a species responsible for harmful algal blooms in the global ocean, forming blooms in the Beibu Gulf annually since 2011. This species can alternate between solitary free-living cells and colonies. Colonies are the dominant morphotype during blooms. To date, the underlying mechanism of P. globosa blooms in the Beibu Gulf is poorly understood. After combining results of ecological surveys, laboratory studies, and metatranscriptome and bioinformatics analyses, it was found that low temperatures, high nitrate, and low organic phosphorus induced P. globosa blooms in the Beibu Gulf. Additionally, the unique genetic and physiological characteristics that allow P. globosa to stand out as a dominant species in such an environment include (1) several genes encoding high-affinity nitrate transport proteins that could be highly expressed under sufficient nitrate conditions; (2) energy metabolism genes involved in photosynthesis and oxidative phosphorylation that were actively expressed at low temperatures to carry out carbon and energy reversion and produce sufficient ATP for various life activities, individually; (3) abundant glycan synthesis genes that were highly expressed at low temperatures, thus synthesizing large quantities of proteoglycans to construct the mucilaginous envelope forming the colony; (4) cells in colonies exhibited active gene expression in DNA replication contributing to a faster growth rate, which could help P. globosa occupy niches quickly; and (5) the energy and material expenditure was redistributed in colonial cells accompanied with chitin filaments and flagella degraded, more expenditure was used for the synthesis of the mucilaginous envelope and the rapid proliferation.


Asunto(s)
Haptophyta , Nitratos/metabolismo , Floraciones de Algas Nocivas , Fotosíntesis
5.
Sci Total Environ ; 869: 161762, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36702274

RESUMEN

The excess input of nitrate is one of the primary factors triggering nearshore eutrophication. To estimate the source apportionment of nitrate on the East China Sea (ECS) shelf, the nitrogen and oxygen stable isotopes in nitrate (δ15N-NO3- and δ18O-NO3-) collected in winter and late spring 2016 were analyzed alongside essential physical, chemical and biological parameters. The temporal and spatial distributions and characteristic values of nitrate-bearing water masses were presented. Accordingly, the end-member mixing model and Rayleigh model were applied to systematically analyze biogeochemical processes. The biogeochemical processes of nitrate were weak in winter, except in the southern ECS, where assimilation and nitrification probably occurred. In contrast, the biogeochemical processes were intensive in spring. The stable isotopic fractionations of N and O were unified in the whole area, and the ratio between δ18O-NO3- and δ15N-NO3- was 1.81 ± 0.04, which indicated significant assimilation accompanying nitrification in spring. Furthermore, a Bayesian stable isotope mixing model was used to reveal the source contributions of nitrate on the ECS shelf for the first time, demonstrating that the Changjiang Diluted Water and Kuroshio Subsurface Water were always sustained and provided steady nitrate sources for the whole ECS. The nitrate inputs from the Yellow Sea to the northern ECS increased from approximately 30 % in spring to nearly 70 % in winter, while that from the Taiwan Strait Warm Water to the southern ECS decreased from approximately 40 % in spring to zero in winter. Moreover, although the nitrate contributions from nitrification were significantly weak in the middle and northern ECS during winter, they were important over the entire ECS during spring. This study qualitatively and quantitatively improves the understanding of seasonal nitrate control from various sources, and these findings are important for nutrient management and policy making to mitigate nearshore eutrophication.

6.
Mar Pollut Bull ; 177: 113486, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35279546

RESUMEN

Although internal decomposition of organic matter (OM) in the Kuroshio Subsurface Water (KSSW) is a crucial factor for hypoxia formation in the East China Sea (ECS), the seasonal source and contributions of this OM remain debated. This study applied datasets collected in June and October 2015 to discuss these issues qualitatively and quantitatively. According to the variations in several parameters along the KSSW route, N2 fixation signals related to decomposed OM were apparent in the southern ECS during June, while terrestrial input signals were revealed in the northern ECS during June and most of the ECS during October. The terrestrial input contributed 47% of the decomposed OM near the historic hypoxic area in June, indicating that the terrestrial and marine sources contributed almost equally to the development of ECS hypoxia. These results provide vital information for understanding the mechanism of hypoxia formation driven by eutrophication and oceanic circulation.


Asunto(s)
Eutrofización , Agua , China , Humanos , Hipoxia , Océanos y Mares
7.
Environ Sci Technol ; 56(5): 3056-3064, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35133807

RESUMEN

Harmful algal blooms formed by fast-growing, ephemeral macroalgae have expanded worldwide, yet there is limited knowledge of their potential ecological consequences. Here, we select intense green tides formed by Ulva prolifera in the Yellow Sea, China, to examine the ecological consequences of these blooms. Using 28-isofucosterol in the surface sediment as a biomarker of green algae, we identified the settlement region of massive floating green algae in the area southeast of the Shandong Peninsula in the southern Yellow Sea. The responses of the phytoplankton assemblage from the deep chlorophyll-a maximum layer were then resolved using high-throughput sequencing. We found striking changes in the phytoplankton community in the settlement region after an intensive green tide in 2016, characterized by a remarkable increase in the abundance of the pelagophyte Aureococcus anophagefferens, the causative species of ecosystem disruptive brown tides. Our study strongly suggests that the occurrence of massive macroalgal blooms may promote blooms of specific groups of microalgae through alteration of the marine environment.


Asunto(s)
Estramenopilos , Ulva , Proliferación Celular , China , Ecosistema , Eutrofización , Floraciones de Algas Nocivas , Fitoplancton/fisiología , Estramenopilos/química , Estramenopilos/fisiología , Ulva/fisiología
8.
Mar Pollut Bull ; 172: 112920, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523426

RESUMEN

The severe hypoxia off the Changjiang estuary (CE) has a dual-core structure, and the two hypoxic zones exhibit behavioural, physical and biochemical differences. Currently, few studies have revealed straightforward differences regarding the key biochemical processes between these two hypoxic zones. In this study, the phytoplankton sinking rate (PSR) and sediment oxygen demand (SOD) were measured by field experiments and compared between the two hypoxic regions. PSR and SOD ranged from 0.75-3.34 m day-1 and 5.67-16.19 mmol m-2 day-1, respectively. Interestingly, PSR and SOD were higher in the southern region than in the northern region, implying stronger pelagic-benthic biogeochemical coupling in the southern region. SOD accounted for approximately 44% and 51% of DO net consumption in the northern and southern regions, respectively, from July to August. The southern hypoxic region appeared to exhibit intense DO consumption and fast DO supplementation, while the northern hypoxic region seemed to exhibit slow DO consumption and supplementation.


Asunto(s)
Estuarios , Hipoxia , China , Humanos , Oxígeno/análisis , Fitoplancton
9.
Environ Pollut ; 289: 117964, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426199

RESUMEN

For many years, the dispersal of modified clay (MC) has been used to control harmful algal blooms (HABs) in coastal waters of China. MC flocculation efficiency can be influenced by many factors in variable and complex natural environments, including high concentrations of dissolved organic matter (DOM) in the water to be treated. Since many HABs occur in nearshore waters where DOM concentrations are high, this is a significant problem that requires urgent attention. This study involved the use of humic acid as a representative form of DOM to study the influence of organic matter on the MC flocculation process. At high concentrations, humic acid was adsorbed onto MC particles, resulting in a decrease in surface potential and an increase in electrostatic repulsion between the clay particles; this decreased the MC settling rate and increased the water clarification time. Flocs were characterized by their relatively small particle size, high particle concentration, and low collision efficiency, which together resulted in slow clarification of the water after MC spraying. Based on the mechanism of the DOM-MC interaction and combined with the Derjaguin-Landau-Verwey-Overbeek theory and theoretical considerations of clay surface modification, the "ionic atmosphere compression" method was used to improve MC flocculation efficiency in high-organic water. This method increased the ionic strength of the clay stock solution by adding salt, thereby compressing the ionic atmosphere of MC particles and lowering the potential barrier, allowing the MC particles in the treated water to flocculate rapidly and form large flocs, followed by further floc growth and rapid settling via differential sedimentation. The settling rate of MCs improved by a factor of two and the removal efficiency of the HAB cells increased by 7-28%. This study provides important baseline information that will extend the application of MC to HAB control in water bodies with high organic loadings.


Asunto(s)
Floraciones de Algas Nocivas , Sustancias Húmicas , China , Arcilla , Floculación
10.
Environ Pollut ; 265(Pt B): 115066, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32806459

RESUMEN

Hypoxia off the Changjiang Estuary (CE) and its adjacent waters is purported to be the most severe in China, attracting considerable concern from both the scientific community and the general public. Currently, continuous observations of dissolved oxygen (DO) levels covering hypoxia from its appearance to disappearance are lacking. In this study, twelve consecutive monthly cruises (from February 2015 to January 2016) were conducted. The consecutive spatiotemporal variations in hypoxia throughout the annual cycle were elucidated in detail, and the responses of annual variations in hypoxia to the different influential factors were explored. Overall, hypoxia experienced a consecutive process of expanding from south to north, then disappearing from north to south. The annual variations in hypoxia were mainly contingent on stratification variations. Among different stages, there was significant heterogeneity in the dominant factors. Specifically, low-DO waters initially appeared from the intrusion of nearshore Kuroshio branch current (NKBC), as NKBC intrusion provided a low-DO background and triggered stratification. Thereafter, stratification was enhanced and gradually expanded northward, which promoted the extension of low-DO areas. The formation of hypoxia was regionally selective, and more intense organic matter decomposition at local regions facilitated the occurrence and discontinuous distribution of hypoxia. Hypoxic zones were observed at the Changjiang bank and Zhejiang coastal region from August (most extensively at 14,800 km2) to October. Thereafter, increased vertical mixing facilitated the dissipation of hypoxia from north to south.


Asunto(s)
Estuarios , Oxígeno/análisis , China , Humanos , Hipoxia
11.
Environ Toxicol Chem ; 39(10): 2065-2075, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33464659

RESUMEN

The abalone industry has suffered immense economic losses due to the occurrence of harmful algal blooms (HABs). Among the methods for mitigating HABs, modified clay is considered the most promising strategy and has been successfully used for field applications in many countries, and its environmental effects have become a subject of global concern. The effects of modified clay on the survival, growth, nutritional quality, and oxidative stress indicators of abalone were studied based on both laboratory and field experiments. The results showed that modified clay at 3-10 times the concentrations used for HAB treatment did not affect the survival of abalone. During the laboratory experiments, the increases in abalone shell length and weight nonsignificantly decreased with increasing concentrations of modified clay at 1-15 d, whereas the weight of abalone in the experimental groups increased rapidly during the recovery period at 16-30 d. The growth and nutrition qualities of abalone in field experiments showed negligible differences between the control and experimental groups. Catalase (CAT) activity in the hepatopancreas and superoxide dismutase (SOD) activity in the gills were significantly affected by certain concentrations of modified clay at individual time points, whereas the malondialdehyde (MDA) content decreased in all experimental groups within 96 h. The removal of bacteria and the mitigation of water quality decline were among the effects of modified clay that contributed to the decrease in MDA content. The present study showed that modified clay had no obvious adverse effects on the survival, growth, quality, or oxidative stress indicators of abalone at the experimental concentrations, thus providing a reference for the field application of modified clay in typical aquaculture areas. Environ Toxicol Chem 2020;39:2065-2075. © 2020 SETAC.


Asunto(s)
Gastrópodos/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Caolín/farmacología , Contaminación del Agua/prevención & control , Animales , Antioxidantes/metabolismo , Acuicultura , Gastrópodos/crecimiento & desarrollo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Caolín/química , Caolín/toxicidad , Modelos Teóricos , Estrés Oxidativo/efectos de los fármacos , Alimentos Marinos , Contaminación del Agua/análisis
12.
Harmful Algae ; 72: 36-45, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29413383

RESUMEN

Cyst formation plays an important role in the resistance of dinoflagellates to adverse environments, and cyst germination is considered one of the causes of harmful algal blooms (HABs). Among the methods for mitigating HABs, modified clay (MC) is considered a promising strategy because of its high efficiency and low environmental impacts. The typical HAB species Alexandrium pacificum was focused on in this study to clarify the effects of MC on cyst formation and germination. The results showed that more than 90% of the vegetative cells were removed under the 0.6 g/L MC treatment. The vegetative cell density was monitored over 90 d and increased slightly to the peak at 10 d after the cell removal experiment, but persistent growth was not observed. The amount of cysts was maximal at 20 d after removal, however, most of the cysts were temporary cysts that subsequently disappeared. After 80 d, all the remaining cysts were resting ones. The total density of resting cysts was higher under MC concentrations of 0.2 and 0.4 g/L and lower under concentrations of 0.6, 0.8 and 1.0 g/L compared with that in the control. The total formation rate of resting cysts was 29.6% in the control group, and the lowest formation rate in the experimental groups was 15.5% at 0.6 g/L MC. The total germination rate of resting cyst decreased as the MC concentration increased, and approximately 68.0% of the resting cysts in the control group germinated successfully, whereas the addition of MC reduced the germination rate to as low as 12.4%. Our results indicated that the application of appropriate MC concentrations may provide an effective mitigation strategy for A. pacificum blooms because it does not leave more residual cysts, which can act as "seeds" for the initiation of HABs.


Asunto(s)
Arcilla , Dinoflagelados , Floraciones de Algas Nocivas , Control de Plagas/métodos , Dinoflagelados/crecimiento & desarrollo
13.
Mar Pollut Bull ; 125(1-2): 440-450, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29029983

RESUMEN

Based on two multidisciplinary investigations conducted in summer and winter 2015, the distribution of dissolved oxygen (DO) and the associated seasonal variations off the Changjiang River Estuary (CRE) were studied. The DO content was high in winter, ranging from 6.81-10.29mg/L, and the distribution was mainly controlled by temperature and salinity. The DO concentration was 1.92-9.67mg/L in summer, and a hypoxic zone (DO<3mg/L) covered 14,800km2, which was mainly controlled by stratification and organic matter decomposition. The hypoxic zone exhibited a "dual-core" structure and the differences in the biochemical and physical processes between the southern and northern regions were compared: the northern region exhibited stronger pycnocline intensity; while larger biomass and higher TOC as well as TN contents were observed in the southern region. Hypoxia in the northern region might be mainly dominated by stratification, while that in the southern region was mainly associated with organic matter decomposition.


Asunto(s)
Estuarios , Oxígeno/análisis , China , Ríos/química , Salinidad , Estaciones del Año , Temperatura
14.
Chemosphere ; 127: 188-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25721022

RESUMEN

Among various mitigation strategies for harmful algal blooms (HABs), the flocculation of algal cells by using modified clay (MC) has been widely applied in the field, particularly in Japan, Korea and China. However, to examine the long-term effects and the environmental safety of this method, we investigated alterations in macronutrients and paralytic shellfish poisoning toxins (PSTs) induced by the application of MC treatment to a toxic bloom, Alexandrium tamarense. The control, algal cells grew in nature condition (A1), was compared to the only MC flocculation (A2) and the MC-sediment co-matrix systems of A. tamarense (A3). The low-dosage of 0.25 g L(-1) MC could efficiently remove >90% of the A. tamarense cells within 3.5h. The mechanisms underlying the effects elicited by MC flocculation on nutrient cycling, PSTs and Chl-a degradation were also discussed. This study demonstrated that MC treatment was able to significantly remove the macronutrients (43-60% TP removal and 17-30% TN removal) and scavenge most of the PSTs from seawater, thereby speeding up the nutrient settling and the transformation and degradation of PSTs (83% decreasing in A2). Simultaneously, the study firstly demonstrated the potential detoxification of PSTs by using MC treatment, from the high toxicity of gonyautoxin 1 and 4 (GTX1 and GTX4) to the lower toxicity decarbamoyl gonyautoxins (dcGTX3) and gonyautoxin 2 (GTX2), particularly within the water-sediment environment during the two month incubation.


Asunto(s)
Silicatos de Aluminio/química , Dinoflagelados/crecimiento & desarrollo , Floraciones de Algas Nocivas , Saxitoxina/análogos & derivados , Intoxicación por Mariscos/prevención & control , Contaminación del Agua/prevención & control , Adsorción , China , Arcilla , Clima , Dinoflagelados/metabolismo , Floculación , Humanos , Saxitoxina/análisis , Agua de Mar/química
15.
Huan Jing Ke Xue ; 34(9): 3405-15, 2013 Sep.
Artículo en Chino | MEDLINE | ID: mdl-24288983

RESUMEN

Three cruises were carried out in the Yangtze Estuary and its adjacent areas in May, November, June during 2009-2010. The spatial variations of phytoplankton community structure were investigated based on RP-HPLC analysis of pigments and CHEMTAX processing of the pigment data. 21 kinds of pigments were detected, among which chlorophyll a, peridinin, fucoxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll b, diadinoxanthin, alloxanthin and zeaxanthin were the major pigments in the Yangtze Estuary and its adjacent areas. Chlorophyll a was the most abundant in all pigments, followed by fuxoxanthin. Other pigments generally contributed a minor proportion to the total pigments. High concentrations of fucoxanthin and peridinin were observed in May 2009 and June 2010, indicating blooms of diatoms and dinoflagellates. The results showed that the composition and distribution of phytoplankton pigments were influenced by environmental factors. The phytoplankton community, as determined by biomarker pigment concentration using HPLC and CHEMTAX, was composed mainly of diatoms, dinoflagellates, cryptophytes, chlorophytes, cyanobacteria, prymnesiophytes, chrysophytes and prasinophytes. The dominant algal groups were diatoms, dinoflagellates and chlorophytes in May 2009. The phytoplankton community was characterized by high contribution of diatoms in November 2009. Diatoms, dinoflagellates and cryptophytes accounted for 62.5% of chlorophyll a in June 2010, and the relative abundance of cyanobacteria was higher in this cruise. The spatial variations of phytoplankton community structure featured distinct regionality. Diatoms, chlorophytes and cryptophytes were the main groups in the inshore waters, and the abundances of prymnesiophytes, chrysophytes and cyanobacteria were increasing from inshore to the open sea.


Asunto(s)
Estuarios , Fitoplancton/química , Pigmentos Biológicos/análisis , Carotenoides/análisis , China , Clorofila/análisis , Chlorophyta/química , Cianobacterias/química , Diatomeas/química , Dinoflagelados/química , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...