Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 11(6): 1548-1559, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38263896

RESUMEN

Self-healing elastomers usually show poor mechanical properties and environmental stability, and they cannot self-report mechanical/chemical damage. Herein, an innovative design strategy is reported that combines symmetric/asymmetric chain extenders to create large yet disordered hard domains within polyurethane (PU) elastomers, enabling the integration of mechanical robustness and self-reporting and self-healing capabilities to overcome both mechanical and chemical damage. Specifically, large yet disordered hard domains were created by governing the molar contents of asymmetric fluorescent 2-(4-aminophenyl)-5-aminobenzimidazole (PABZ) and symmetric 4-aminophenyl disulfide (APDS). Such a structural feature led to a small free-volume fraction, prominent strain-induced crystallization (SIC), and high energy of dissipation, enabling the PU elastomer to display outstanding mechanical strength (60.7 MPa) and toughness (177.9 MJ m-3). Meanwhile, the loose stacking of disordered hard domains imposed small restriction on network chains and imparted the network with high relaxation dynamics, leading to high healing efficiency (97.8%). More importantly, the fluorescence intensity was stimulus-responsive and thus the PU elastomer could self-report mechanical/chemical damage and healing processes. The PU elastomer also showed potential application prospects in information encoding and encryption. Furthermore, selecting polydimethylsiloxane as one of the soft segments could effectively endow the PU elastomer with intrinsic hydrophobicity. Therefore, this work provides valuable guidance for designing multi-functional materials with anti-counterfeiting, self-reporting, and healing properties as well as high mechanical properties and hydrophobicity.

2.
Polymers (Basel) ; 15(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836074

RESUMEN

Recently, many tough synthetic hydrogels have been created as promising candidates in fields such as smart electronic devices. In this paper, we propose a simple strategy to construct tough and robust hydrogels. Two-dimensional Ti3C2Tx MXene nanosheets and metal ions were introduced into poly(acrylamide-co-acrylic acid) hydrogels, the MXene nanosheets acted as multifunctional cross-linkers and effective stress-transfer centers, and physical cross-links were formed between Fe3+ and carboxylic acid. Under deformation, the coordination interactions exhibit reversible dissociation and reorganization properties, suggesting a novel mechanism of energy dissipation and stress redistribution. The design enabled the hydrogel to exhibit outstanding and balanced mechanical properties (tensile strength of up to 5.67 MPa and elongation at break of up to 508%). This study will facilitate the diverse applications of metallosupramolecular hydrogels.

3.
Mater Horiz ; 10(10): 4303-4316, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697907

RESUMEN

Hydrogels with rapid gelation ability and robust mechanical properties are highly desirable for nascent applications in biomedical, wearable electronic, industrial and agricultural fields. However, current rapid-gelation hydrogels are compromised by poor mechanical properties, complex design of precursor molecular structures and limited precursor species. Herein, we propose a facile and universal strategy to achieve rapid gelation, strengthening and toughening of free-radical polymerized hydrogels by introducing cheap and accessible amino acids. Amino acids not only activate persulfate to quickly produce free radicals and thus induce fast free radical polymerization, but also can form strong hydrogen bonds with the network chains to strengthen and toughen the hydrogels. For example, with the presence of L-serine, the acrylamide (AM) monomer shows rapid gelation within tens of seconds, and moreover the resulting hydrogel reaches a tensile strength of 0.45 MPa and a breaking strain of 2060%. More importantly, owing to the extremely dynamic feature of the hydrogen bonds between L-serine molecules and network chains, the hydrogel possesses the advantages of low hysteresis, rapid self-recovery capability and outstanding fatigue resistance. Furthermore, this strategy is general to a wide range of amino acids and monomers. We also demonstrate that this rapid, controllable and universal strategy for the fabrication of mechanically robust hydrogels holds tremendous potential for diverse practical applications, such as flexible electronic sensors and ultraviolet (UV)-blocking artificial skins.

4.
RSC Adv ; 13(6): 3661-3668, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36756571

RESUMEN

The fabrication of mechanically robust multifunctional nanocomposite (NC) films using simple but effective strategies is a long-term challenge. Inspired by natural nacre, we designed and fabricated high-performance nacre-like NC films (Na-MTM/HBP) through the self-assembly of the hyperbranched poly(amido amine) (HBP) and montmorillonite (Na-MTM) using a vacuum filtration approach. The optimal Na-MTM/HBP NC film shows excellent mechanical strength (106 MPa), which can be attributed to the formation of numerous hydrogen bonds and the electrostatic interactions between hyperbranched HBP and Na-MTM nanosheets. Such films also exhibit excellent gas barrier and fire-fire-retardant owing to the high aspect ratio of the Na-MTM nanosheets. In this work, a class of high-performance NC films exhibiting good mechanical, gas barrier, and flame retardancy properties have been developed. These NC films have great potential in packing or coating materials.

5.
Colloids Surf B Biointerfaces ; 218: 112721, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35905590

RESUMEN

Promoting the in situ regeneration of cartilage without additional cells or cytokines remains challenging. Here, inspired by the unique microstructures of subchondral bone, a cell and cytokine free hydrogel scaffold for cartilage regeneration was developed via a strategy of directional lyophilization and postcrosslinking. This strategy achieved intersecting microchannels in an orderly arrangement and an aligned ladder-like texture in a semi-interpenetrating hydrogel network. The resulting hydrogel had similar mechanical properties to the native cartilage extracellular matrix. Incorporating chitosan into the rigid network also endowed the hydrogel with excellent hemostatic properties. By delicately tuning the components and postcrosslinking conditions, the hydrogel was further endowed with suitable swelling and degradation properties for cartilage regeneration. In vitro tests showed that the highly biocompatible hydrogel scaffold could facilitate the migration and chondrogenic differentiation of bone marrow mesenchymal stem cells. In vivo results further verified that the hydrogel could promote the in situ regeneration of cartilage in a rat model of osteochondral defects. In summary, the subchondral bone-like hydrogel revealed promising prospects in cartilage regeneration and a variety of bioremediation applications.


Asunto(s)
Cartílago Articular , Quitosano , Hemostáticos , Animales , Cartílago , Quitosano/farmacología , Condrogénesis , Hemostáticos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Biotechnol Biofuels Bioprod ; 15(1): 45, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509012

RESUMEN

BACKGROUND: A lignocellulose-to-biofuel biorefinery process that enables multiple product streams is recognized as a promising strategy to improve the economics of this biorefinery and to accelerate technology commercialization. We recently identified an innovative pretreatment technology that enables of the production of sugars at high yields while simultaneously generating a high-quality lignin stream that has been demonstrated as both a promising renewable polyol replacement for polyurethane applications and is highly susceptible to depolymerization into monomers. This technology comprises a two-stage pretreatment approach that includes an alkaline pre-extraction followed by a metal-catalyzed alkaline-oxidative pretreatment. Our recent work demonstrated that H2O2 and O2 act synergistically as co-oxidants during the alkaline-oxidative pretreatment and could significantly reduce the pretreatment chemical input while maintaining high sugar yields (~ 95% glucose and ~ 100% xylose of initial sugar composition), high lignin yields (~ 75% of initial lignin), and improvements in lignin usage. RESULTS: This study considers the economic impact of these advances and provides strategies that could lead to additional economic improvements for future commercialization. The results of the technoeconomic analysis (TEA) demonstrated that adding O2 as a co-oxidant at 50 psig for the alkaline-oxidative pretreatment and reducing the raw material input reduced the minimum fuel selling price from $1.08/L to $0.85/L, assuming recoverable lignin is used as a polyol replacement. If additional lignin can be recovered and sold as more valuable monomers, the minimum fuel selling price (MFSP) can be further reduced to $0.73/L. CONCLUSIONS: The present work demonstrated that high sugar and lignin yields combined with low raw material inputs and increasing the value of lignin could greatly increase the economic viability of a poplar-based biorefinery. Continued research on integrating sugar production with lignin valorization is thus warranted to confirm this economic potential as the technology matures.

7.
Gels ; 7(4)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34698196

RESUMEN

Many high-strength hydrogels have been developed in recent years; however, few of them are both tough and resilient, and their intrinsic paradoxical nature makes designing a gel with both high toughness and high resilience a great challenge. To address this problem, we introduced both N,N,N,N-pentamethyldiethylenetriamine (PA) and N,N-methylenebisacrylamide (MBA) into polyacrylamide hydrogel networks to construct an entangled network that contains chemically cross-linked chains and branched chains simultaneously. The entanglements of branched chains can act as a physical cross-linking point to uniformly disperse stress on molecular chains, and chemical cross-linking ensures the stability of the hydrogel network. The increase in the number and length of branched chains is able to achieve an enhancement in strength while the slip of the entangled polymer chains can effectively achieve energy dissipation and can improve the toughness of the gel. Moreover, the resultant hydrogels exhibit an excellent resilience (>98%). Therefore, high toughness and resilience are achieved simultaneously. In addition, we also investigated the initiation mechanism of PA. This strategy creates a new way for the preparation of next-generation high toughness and high resilience hydrogel-based materials, which have promising applications in wearable, flexible strain/pressure sensors.

8.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443376

RESUMEN

In order to reduce the environmental pollution caused by waste rubber and to realize the recycling of resources, we proposed a facile method for the hydrophilic modification of waste rubber powder (HRP) and used it to reinforce a composite hydrogel. In the presence of toluene, dibenzoyl peroxide (BPO) diffused into the waste rubber powder. After the solvent was removed, BPO was adsorbed in the rubber powder, which was used to initiate the grafting polymerization of the acrylamide monomer on the rubber-water interface. As a result, the polyacrylamide (PAM) molecular chains were grafted onto the surface of the rubber powder to realize hydrophilic modification. The success of the grafting modification was confirmed by FTIR, contact angle testing, and thermogravimetric analysis. The hydrophilic modified waste rubber powder was used to reinforce the PAM hydrogel. Mechanical tests showed that the tensile strength and elongation at the break of the composite hydrogel reached 0.46 MPa and 1809%, respectively, which was much higher than those of pure PAM hydrogel. Such a phenomenon indicates that the waste rubber particles had a strengthening effect.

9.
Biomacromolecules ; 21(4): 1471-1479, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069405

RESUMEN

To improve the salt tolerance/sensitivity of cellulose nanofibrils (CNFs), zwitterionic cellulose nanofibrils (ZCNFs) were prepared from softwood bleached kraft pulp fibers via a sequential process of anionic modification with 2,2,6,6-tetramethylepiperidin-1-oxyl (TEMPO)-mediated oxidation, cationic modification with (2,3-epoxypropyl) trimethylammonium chloride (EPTMAC), and high-pressure homogenization. To produce ZCNFs with different contents of cation group, EPTMAC loadings of 0.15 to 1.15 g/g fiber were explored during cationization. The obtained ZCNFs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and rheological measurements. The salt tolerance of the ZCNFs was investigated by adding mixed salts into the ZCNF dispersions. The results demonstrated that the ZCNFs with both anionic and cationic charges were produced. Compared with the TEMPO-mediated oxidized cellulose nanofibrils (TOCNFs), the ZCNFs exhibited an excellent "salt-thickening" behavior under the studied salt concentrations (2-24% w/w). Moreover, increasing the content of the cation group increased the salt tolerance/sensitivity of ZCNFs. This work demonstrated that introducing cationic charges to the anionic charged TOCNFs imparts the produced ZCNFs with excellent salt sensitivity and tolerance, which could expand the application of nanocellulose in oil recovery or wastewater treatment.


Asunto(s)
Celulosa Oxidada , Hipertensión , Nanofibras , Celulosa , Humanos , Espectroscopía Infrarroja por Transformada de Fourier
10.
Carbohydr Polym ; 229: 115465, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826464

RESUMEN

A copolymer (PADH) was first synthesized from 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N-dimethylacrylamide (DMA), and 2-Hydroxyethyl acrylate (HEA) by UV-induced polymerization. Subsequently, cellulose nanofibrils (CNFs) were introduced into the copolymer through ironic cross-linking between ferric ions and carboxylate groups as well as sulfonic acid groups to produce a hybrid product (PADHC-Fe3+-3). The salt tolerance and thermal stability of the copolymers and the hybrid product were investigated. The results showed that the optimum HEA dosage was 5% (in relation to the total mass of AMPS and DMA). In addition, the fluid loss test showed that the hybrid product PADHC-Fe3+-3 had excellent salt tolerance (maximum tolerance: 26.5 wt% NaCl and 32 wt% combined salts) and thermal stability (maximum tolerance: 200 °C). The SEM images indicated that the filter cakes became denser after the addition of PADHC-Fe3+-3. The results demonstrated that the cross-linked hybrid product was very promising for industrial application in drilling engineering.

11.
Carbohydr Polym ; 212: 67-74, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30832882

RESUMEN

Ionic-covalent cross-linked poly-2-acrylamido-2-methylpropane sulfonic acid (AMPS)-N,N-Dimethylacrylamide (DMA)-cellulose nanofibril (CNF)-Fe3+ (PADC-Fe3+) hydrogels were synthesized by immersing CNFs reinforced covalent poly-AMPS-DMA (PAD) composite hydrogels into ferric chloride aqueous solution. To produce PADC-Fe3+ polymer with different CNF contents, CNF loadings of 5-20% were explored. The UV-spectroscopy analysis demonstrated the occurrence of CNF coalescence and optimized that 10% CNF loading resulted in the production of PADC-0.1-Fe3+ with the highest absorbance. Compared to copolymers (PAD or PADC-0.1) prepared without CNF or Fe3+, the synthesized PADC-0.1-Fe3+ showed much better tolerance to salt, high temperature, and shear. After adding synthesized PADC-0.1-Fe3+ as a filtrate reducer into the drilling fluids prepared with fresh water and 4% sodium chloride (NaCl), the filtrate loss was significantly reduced even at an elevated temperature of 200 ℃. Additionally, the addition of PADC-0.1-Fe3+ also increased the portion of fine cement particles in the drilling fluid.

12.
Bioresour Technol ; 266: 194-202, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29982039

RESUMEN

To improve sugar recovery and ethanol production from wheat straw, a sequential two-stage pretreatment process combining alkaline pre-extraction and acid catalyzed steam treatment was investigated. The results showed that alkaline pre-extraction using 8% (w/w) sodium hydroxide at 80 °C for 90 min followed by steam pretreatment with 3% (w/w) sulfur dioxide at 151 °C for 16 min was sufficient to prepare a substrate that could be efficiently hydrolyzed at high solid loadings. Moreover, alkaline pre-extraction reduced the process severity of steam pretreatment and decreased the generation of inhibitory compounds. During enzymatic hydrolysis, increasing solid loading decreased the yield of monomeric sugars. Enzymatic hydrolysis at 25% (w/v) solid loading, the yields of approximately 80% of glucose and 65% of xylose could be reached with an enzyme dosage of 25 mg protein/g glucan. Following fermentation of hydrolysate with sugar concentration of approximately 120 g/L, an ethanol concentration of 54.5 g/L was achieved.


Asunto(s)
Etanol , Azúcares , Triticum , Carbohidratos , Fermentación , Hidrólisis , Vapor
13.
Bioresour Technol ; 259: 228-236, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29567594

RESUMEN

An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H2O2)/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively.


Asunto(s)
Peróxido de Hidrógeno , Lignina , Triticum , Etanol , Fermentación , Hidrólisis
14.
Bioresour Technol ; 247: 242-249, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28950132

RESUMEN

A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H2O2) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H2O2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity.


Asunto(s)
Biomasa , Etanol , Fermentación , Peróxido de Hidrógeno , Hidrólisis , Lignina , Hidróxido de Sodio
15.
Bioresour Technol ; 236: 202-211, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28411492

RESUMEN

Aiming for the complete utilization of bamboo biomass, an integrated process which combines ethanol production with the recovery of silica and lignin was proposed. To reduce chemical charge required for the fractionation of silica and lignin from bamboo and improve the digestibility of the obtained substrate, a sequentially two-stage pretreatment process of autohydrolysis and alkaline extraction was carried out. From the view of enhancing enzymatic hydrolysis and recovery of silica and lignin, a two-stage treatment of autohydrolysis at 180°C for 90min followed by alkaline extraction at 100°C with 6% NaOH (based on pretreated chips) for 120min was optimized. About 93.7% of original silica and 75.7% of original lignin could be recovered from bamboo. Enzymatic hydrolysis and fermentation of carbohydrates showed that an overall sugar yield of 88.6% of original sugar content and an ethanol recovery of 0.467g/g sugar were achieved based on the proposed scheme.


Asunto(s)
Biomasa , Biotecnología , Etanol/química , Fermentación , Hidrólisis , Lignina/química
16.
Biotechnol Biofuels ; 10: 38, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28203276

RESUMEN

BACKGROUND: Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. RESULTS: An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. CONCLUSIONS: The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes.

17.
Bioresour Technol ; 223: 40-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27788428

RESUMEN

To improve the efficiency of enzymatic hemicellulose removal from bamboo pre-hydrolysis kraft pulp, mechanical refining was conducted prior to enzyme treatment. Refining significantly improved the subsequent hemicellulose removal efficiency by xylanase treatment. Results showed that when PFI refining was followed by 3h xylanase treatment, the xylan content of the bamboo pre-hydrolysis kraft pulp (after first stage oxygen delignification) could be decreased to 2.72% (w/w). After bleaching of enzyme treated pulp, the alpha-cellulose content was 93.4% (w/w) while the xylan content was only 2.38%. The effect of refining on fibre properties was investigated in terms of freeness, water retention value, fibre length and fibrillation characteristics. The brightness, reactivity and viscosity were also determined to characterize the quality of final pulp. Results demonstrated the feasibility of combining refining and xylanase treatment to produce high quality bamboo dissolving pulp.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Polisacáridos/química , Celulosa/farmacología , Hidrólisis , Sasa/química , Viscosidad , Madera/química
18.
Biotechnol Biofuels ; 9: 224, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790287

RESUMEN

BACKGROUND: During pretreatment, hemicellulose is removed from biomass via proton-catalyzed hydrolysis to produce soluble poly- and mono-saccharides. Many kinetic models have been proposed but the dependence of rate on proton concentration is not well-defined; autohydrolysis and dilute-acid hydrolysis models apply very different treatments despite having similar chemistries. In this work, evolution of proton concentration is examined during both autohydrolysis and dilute-acid hydrolysis of hemicellulose from green bamboo. An approximate mathematical model, or "toy model", to describe proton concentration based upon conservation of mass and charge during deacetylation and ash neutralization coupled with a number of competing equilibria, was derived. The model was qualitatively compared to experiments where pH was measured as a function of time, temperature, and initial acid level. Proton evolution was also examined at room temperature to decouple the effect of ash neutralization from deacetylation. RESULTS: The toy model predicts the existence of a steady-state proton concentration dictated by equilibrium constants, initial acetyl groups, and initial added acid. At room temperature, it was found that pH remains essentially constant both at low initial pH and autohydrolysis conditions. Acid is likely in excess of the neutralization potential of the ash, in the former case, and the kinetics of neutralization become exceedingly small in the latter case due to the low proton concentration. Finally, when the hydrolysis reaction proceeded at elevated temperatures, one case of non-monotonic behavior in which the pH initially increased, and then decreased at longer times, was found. This is likely due to the difference in rates between neutralization and deacetylation. CONCLUSIONS: The model and experimental work demonstrate that the evolution of proton concentration during hydrolysis follows complex behavior that depends upon the acetyl group and ash content of biomass, initial acid levels and temperature. In the limit of excess added acid, pH varies very weakly with time. Below this limit, complex schemes are found primarily related to the selectivity of deacetylation in comparison to neutralization. These findings indicate that a more rigorous approach to models of hemicellulose hydrolysis is needed. Improved models will lead to more efficient acid utilization and facilitate process scale-up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA