Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 44(23): 3563-3574, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35392776

RESUMEN

Aiming at the problems of high xylene concentration and difficult removal in heavily polluted areas, high-efficient degrading bacteria of volatile organic compounds (VOCs) xylene in heavily polluted areas were selected and screened from sewage sludge, and their degradation characteristics were studied. The response surface methodology (RSM) optimized the optimal degradation conditions. The results showed that the screened degrading strain was identified as Klebsiella by the 16SrDNA technology and named H-16. During the start-up phase of the reactor, the removal rate of xylene by strain H-16 fluctuated, and it was stable above 71.3% for 150 min. At 40°C, the degradation rate is the highest, reaching 63.25%. With an increasing inoculum amount of strain H-16, the degradation rate of xylene gradually increased, and the degradation rate could reach 86.1% when the inoculation amount was 25%. A neutral environment was more conducive to the degradation and removal of xylene. Through the analysis of the model and RSM, the optimal conditions for the degradation of xylene by H-16 were obtained: 38.89°C, pH 6.94 and 18.07%. GC-MS results showed that the possible degradation pathway of xylene began with demethylation, formation of pentene diacid by benzene ring cleavage, and finally oxidation to generate CO2 and H2O.


Asunto(s)
Compuestos Orgánicos Volátiles , Xilenos , Xilenos/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Oxidación-Reducción
2.
Environ Pollut ; 312: 119929, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977634

RESUMEN

Biotechnological strategies have become effective in the remediation of polluted soils as they are cost-effective and do not present a risk of secondary pollution. However, using a single bioremediation technique (microorganism or plant) is not suitable for achieving a high remediation rate of polluted saline-alkali soils with heavy metals. Therefore, the present study aims to assess the effects and mechanisms of combined ryegrass and Fusarium incarnatum on the zinc (Zn)-polluted saline-alkali soil over 45 days. According to the obtained results, the combined Fusarium incarnatum-ryegrass showed the highest remediation rate of 49.35% after 45 days, resulting in a significantly lower soil Zn concentration than that observed in the control group. In addition, the inoculation of Fusarium incarnatum showed a positive effect on the soil EPS secretion. The soil protein contents ranged from 0.035 to 0.055 mg/kg, while the soil polysaccharide contents increased from 0.25 to 0.61 mg/g. The soil microbial flora and ryegrass showed resistance to saline and alkaline stresses through the secretion of extracellular polysaccharides. The three-dimensional fluorescence spectrum (3D-EEM) confirmed that EPS in the soil was mainly a fulvic acid-like substance. The fluorescein diacetate (FDA) hydrolase activity in the saline-alkali soil was first increased due to the effect of Fusarium incarnatum and then decreased to a minimum value of 96 µg/(g·h). In addition, the Fusarium incarnatum inoculation improved the diversity and richness of soil fungi. Although the Fusarium incarnatum inoculation had a slight effect on the germination of ryegrass, it increased the biomass and enrichment coefficient. The results revealed a translocation factor (TF) value of 0.316 at 45 days after ryegrass sowing, showing significant enrichment of the soil Zn heavy metal zinc in the ryegrass roots.


Asunto(s)
Lolium , Metales Pesados , Contaminantes del Suelo , Álcalis , Biodegradación Ambiental , Fusarium , Hidrolasas , Lolium/metabolismo , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Zinc/metabolismo
3.
Environ Sci Pollut Res Int ; 29(25): 37906-37918, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35067876

RESUMEN

The selection and configuration of soil media are a core issue of the bioretention system. A porous carbon material of Fe3O4/biochar (BSF) was prepared by adding pickling wastewater to modified sludge biochar, which could serve as a good adsorption performance and cheap media for bioretention system. Through the analytic hierarchy process (AHP), different media were evaluated according to their characteristics. By comparing the characteristics of BSF to bio-ceramic (BC), zeolite (ZE), and activated carbon (AC), it was found that BSF has a larger specific surface area and pore volume. The hydrological characteristics of the medium were also tested. The results show that BSF has better water-absorbing quality and hydraulic conductivity than the other three media, but the water-retention property of the medium seems to be inferior. BSF has stable adsorption performance for ammonia nitrogen (NH4+-N) and total phosphorus (TP) in rainwater. Its high adsorption capacity is maintained at 5-35°C, but it is very susceptible to pH factors. The adsorption process by BSF and other media conforms to pseudo-second-order kinetics and the Langmuir model in rainwater. In general, the performance of BSF is shown to be superior to BC, ZE, and AC, making it a potential medium for bioretention system.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Medios de Cultivo , Cinética , Fósforo , Aguas del Alcantarillado , Agua , Contaminantes Químicos del Agua/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-33989122

RESUMEN

This study is screened for naphthalene degrading strains from a heavily polluted area with high naphthalene concentration in the rainwater for the effective removal of naphthalene from rainwater. Recently, naphthalene biodegradation has been achieved in water. However, the influences of organics and inorganics in the rainwater on the biodegradation of naphthalene remains unclear. The naphthalene degrading strain Klebsiella sp. (WJ-1) was identified from sewage sludge. The effects of temperature, pH, inoculum size, and rotation speed on the degradation ability of WJ-1 were studied. The results showed that the naphthalene degradation rates of WJ-1 in rainwater were higher than those in aqueous solution at different experimental conditions. The optimal conditions were 30 °C, 10% inoculum size, pH 7.0, and a rotation speed of 150 rpm. The substances in rainwater might be important co-metabolites of naphthalene degradation. Based on intermediate metabolites detected by gas chromatography-mass spectrometer (GC-MS), the naphthalene biodegradation pathway was identified, as being similar to the phthalic acid pathway. These results suggest WJ-1 as a good candidate for the efficient bioremediation of naphthalene from rainwater in heavily polluted areas.


Asunto(s)
Klebsiella/metabolismo , Naftalenos/metabolismo , Lluvia/química , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Klebsiella/aislamiento & purificación , Redes y Vías Metabólicas , Aguas del Alcantarillado/microbiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA