Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612912

RESUMEN

Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29-318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement.


Asunto(s)
Fitomejoramiento , Triticum , Alelos , Triticum/genética , Mutación , Cromosomas
2.
Plant Dis ; 108(6): 1682-1687, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38190359

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat. Cultivated einkorn (Triticum monococcum L. ssp. monococcum, 2n = 2x = 14, AmAm), one of the founder crops of agriculture, harbors unexploited genetic sources for wheat improvement. An advanced wheat line, Z15-1949, with 42 chromosomes, selected from the hybrids of Pst-susceptible common wheat cultivar Crocus and resistant T. monococcum accession 10-1, exhibits high resistance to a mixture of the prevalent Chinese Pst races. Genetic analysis on F1, F2, and F2:3 generations of the cross between Z15-1949 and Pst-susceptible common wheat SY95-71 indicated that the resistance of Z15-1949 was conferred by a recessive gene, tentatively designated as YrZ15-1949. This gene was mapped to the short arm of chromosome 7D using the Wheat 55K single nucleotide polymorphism array, flanked by markers KASP-1949-2 and KASP-1949-10 within a 3.3-cM genetic interval corresponding to a 1.12-Mb physical region in the Chinese Spring reference genome V2.0. The gene differs from previously reported Yr genes on 7D based on their physical positions and is probably a novel gene. YrZ15-1949 would be a valuable resource for developing Pst-resistant wheat cultivars, and the linked markers could be used for marker-assisted selection.


Asunto(s)
Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Basidiomycota/fisiología , Basidiomycota/genética , Genes Recesivos , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Marcadores Genéticos/genética
3.
Theor Appl Genet ; 137(1): 5, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091074

RESUMEN

KEY MESSAGE: A novel major adult-plant stripe rust resistance QTL derived from cultivated emmer wheat was mapped to a 123.6-kb region on wheat chromosome 2BL. Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat. Identification of new sources of resistance and their utilization in breeding programs is the effectively control strategy. The objective of this study was to identify and genetically characterize the stripe rust resistance derived from the cultivated emmer accession AS286. A recombinant inbred line population, developed from a cross between the susceptible durum wheat line langdon and AS286, was genotyped using the Wheat55K single nucleotide polymorphism array and evaluated in field conditions with a mixture of the prevalent Chinese Pst races (CYR32, CYR33, CYR34, Zhong4, and HY46) and in growth chamber with race CYR34. Three QTLs conferring resistance were mapped on chromosomes 1BS, 2BL, and 5BL, respectively. The QYrAS286-1BS and QYrAS286-2BL were stable with major effects, explaining 12.91% to 18.82% and 11.31% to 31.43% of phenotypic variation, respectively. QYrAS286-5BL was only detected based on growth chamber seedling data. RILs harboring both QYrAS286-1BS and QYrAS286-2BL showed high levels of stripe rust resistance equal to the parent AS286. The QYrAS286-2BL was only detected at the adult-plant stage, which is different from previously named Yr genes and inherited as a single gene. It was further mapped to a 123.6-kb region using KASP markers derived from SNPs identified by bulked segregant RNA sequencing (BSR-Seq). The identified loci enrich our stripe rust resistance gene pool, and the flanking markers developed here could be useful in marker-assisted selection for incorporating QYrAS286-2BL into wheat cultivars.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Triticum/genética , Triticum/microbiología , Fitomejoramiento , Sitios de Carácter Cuantitativo , Genotipo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629026

RESUMEN

Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof.


Asunto(s)
Fitomejoramiento , Triticum , Genes Dominantes , Poaceae , Triticum/genética , China
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446014

RESUMEN

Spikelet number and grain number per spike are two crucial and correlated traits for grain yield in wheat. Photoperiod-1 (Ppd-1) is a key regulator of inflorescence architecture and spikelet formation in wheat. In this study, near-isogenic lines derived from the cross of a synthetic hexaploid wheat and commercial cultivars generated by double top-cross and two-phase selection were evaluated for the number of days to heading and other agronomic traits. The results showed that heading time segregation was conferred by a single incomplete dominant gene PPD-D1, and the 2 kb insertion in the promoter region was responsible for the delay in heading. Meanwhile, slightly delayed heading plants and later heading plants obviously have advantages in grain number and spikelet number of the main spike compared with early heading plants. Utilization of PPD-D1 photoperiod sensitivity phenotype as a potential means to increase wheat yield potential.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Poaceae/genética , Grano Comestible/genética , Fenotipo
6.
BMC Plant Biol ; 23(1): 336, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353759

RESUMEN

BACKGROUND: Weeds are not only economically important but also fascinating models for studying the adaptation of species in human-mediated environments. Aegilops tauschii is the D-genome donor species of common wheat but is also a weed that influences wheat production. How shading stress caused by adjacent wheat plants affects Ae. tauschii growth is a fundamental scientific question but is also important in agriculture, such as for weed control and wheat breeding. RESULT: The present study indicated that shade avoidance is a strategy of Ae. tauschii in response to shading stress. Ae. tauschii plants exhibited growth increases in specific organs, such as stem and leaf elongation, to avoid shading. However, these changes were accompanied by sacrificing the growth of other parts of the plants, such as a reduction in tiller number. The two reverse phenotype responses seem to be formed by systemically regulating the expression of different genes. Fifty-six genes involved in the regulation of cell division and cell expansion were found to be downregulated, and one key upstream negative regulator (RPK2) of cell division was upregulated under shading stress. On the other hand, the upregulated genes under shading stress were mainly enriched in protein serine/threonine kinase activity and carbon metabolism, which are associated with cell enlargement, signal transduction and energy supply. The transcription factor WRKY72 may be important in regulating genes in response to shading stress, which can be used as a prior candidate gene for further study on the genetic regulation of shade avoidance. CONCLUSIONS: This study sheds new light on the gene expression changes and molecular processes involved in the response and avoidance of Ae. tauschii to shading stress, which may aid more effective development of shading stress avoidance or cultivars in wheat and other crops in the future.


Asunto(s)
Aegilops , Humanos , Aegilops/genética , Triticum , Transcriptoma , Fitomejoramiento , Fenotipo
7.
Adv Sci (Weinh) ; 10(25): e2302459, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381655

RESUMEN

The emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA-associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi-omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ1 -pyrroline-5-carboxylate dehydrogenase (P5CDH). By comparing the properties of wild-type and rocA-deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio-layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site-directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , 1-Pirrolina-5-Carboxilato Deshidrogenasa/química , 1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular
8.
Front Plant Sci ; 14: 1173861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342127

RESUMEN

Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant AK-3537, displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the AK-3537 grain Dek phenotype was determined to be recessive with a specific statistical significance level. We used bulked segregant RNA-seq (BSR-seq), BSA-based exome capture sequencing (BSE-seq), and the ΔSNP-index algorithm to identify candidate regions for the grain Dek phenotype. Two major candidate regions, DCR1 (Dek candidate region 1) and DCR2, were identified on chromosome 7A between 279.98 and 287.93 Mb and 565.34 and 568.59 Mb, respectively. Based on transcriptome analysis and previous reports, we designed KASP genotyping assays based on SNP variations in the candidate regions and speculated that the candidate gene is TraesCS7A03G0625900 (HMGS-7A), which encodes a 3-hydroxy-3-methylglutaryl-CoA synthase. One SNP variation located at position 1,049 in the coding sequence (G>A) causes an amino acid change from Gly to Asp. The research suggests that functional changes in HMGS-7A may affect the expression of key enzyme genes involved in wheat starch syntheses, such as GBSSII and SSIIIa.

9.
J Agric Food Chem ; 71(18): 6894-6907, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37125728

RESUMEN

Due to the large amount of antibiotics used for human therapy, agriculture, and even aquaculture, the emergence of multidrug-resistant Streptococcus suis (S. suis) led to serious public health threats. Antibiotic-assisted strategies have emerged as a promising approach to alleviate this crisis. Here, the polyphenolic compound gallic acid was found to enhance sulfonamides against multidrug-resistant S. suis. Mechanistic analysis revealed that gallic acid effectively disrupts the integrity and function of the cytoplasmic membrane by dissipating the proton motive force of bacteria. Moreover, we found that gallic acid regulates the expression of dihydrofolate reductase, which in turn inhibits tetrahydrofolate synthesis. As a result of polypharmacology, gallic acid can fully restore sulfadiazine sodium activity in the animal infection model without any drug resistances. Our findings provide an insightful view into the threats of antibiotic resistance. It could become a promising strategy to resolve this crisis.


Asunto(s)
Streptococcus suis , Animales , Humanos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Pruebas de Sensibilidad Microbiana , Antibacterianos/metabolismo , Sulfanilamida/metabolismo , Sulfanilamida/farmacología , Membrana Celular
10.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020178

RESUMEN

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Asunto(s)
Fusarium , Fusarium/fisiología , Tetraploidía , Lignina , Poaceae , Genotipo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
11.
PLoS One ; 18(3): e0279707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36867624

RESUMEN

The functionality of HMA3 is a key determinant controlling Cd accumulation in the shoots and grains of plants. Wild relatives of modern crop plants can serve as sources of valuable genetic variation for various traits. Here, resequencing of HMA3 homoeologous genes from Aegilops tauschii (the donor of the wheat D genome) was carried out to identify natural variation at both the nucleotide and polypeptide levels. HMA3 homoeologs are highly conserved, and 10 haplotypes were revealed based on 19 single nucleotide polymorphisms (eight induced single amino acid residue substitutions, including 2 altered amino acids in transmembrane domains) in 80 widely distributed Ae. tauschii accessions. The results provide genetic resources for low/no Cd concentration wheat improvement.


Asunto(s)
Aegilops , Metales Pesados , Cadmio , Proteínas de Transporte de Membrana , Adenosina Trifosfatasas , Triticum
12.
Pathogens ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36839513

RESUMEN

Wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt, recently clarified as B. graminis s. str.), is one of the most destructive diseases of wheat. Pm60 is a nucleotide-binding leucine-rich repeat (NLR) gene that confers race-specific resistance to Bgt. Allelic variants (Pm60, Pm60a, and Pm60b) were found in Triticum urartu and T. dicoccoides, the wild progenitors of wheat. In the present study, we studied the diversity of the Pm60 locus in a large set of wheat germplasm and found 20 tetraploid wheats harboring the Pm60 alleles, which correspond to three novel haplotypes (HapI-HapIII). HapI (Pm60 allele) and HapII (Pm60a allele) were present in domesticated tetraploid wheats, whereas HapIII (Pm60a allele) was identified in wild tetraploid T. araraticum. A sequence comparison of HapII and HapIII revealed that they differed by three SNPs and a GCC deletion. Results of the phylogenetic analysis revealed that HapII was more closely related to the functional haplotype MlIW172. Infection tests showed that HapII-carrying lines display a partial resistance response to Bgt#GH, while HapI was susceptible. Our results provide insights into the genetic evolution of the Pm60 locus and potential valuable alleles for powdery mildew resistance breeding.

13.
Plant Dis ; 107(1): 125-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35698253

RESUMEN

Triticum boeoticum (2n = 2x = 14, AbAb) is an important relative of wheat. This species tolerates many different types of environmental stresses, including drought, salt, and pathogenic infection, and is lower in dietary fiber and higher in antioxidants, protein (15 to 18%), lipids, and trace elements than common wheat. However, the gene transfer rate from this species to common wheat is low, and few species-specific molecular markers are available. In this study, the wheat-T. boeoticum substitution line Z1889, derived from a cross between the common wheat cultivar Crocus and T. boeoticum line G52, was identified using multicolor fluorescence in situ hybridization, multicolor genomic in situ hybridization, and a 55K single-nucleotide polymorphism array. Z1889 was revealed to be a 4Ab (4B) substitution line with a high degree of resistance to stripe rust pathogen strains prevalent in China. In addition, 22 4Ab chromosome-specific molecular markers and 11 T. boeoticum genome-specific molecular markers were developed from 1,145 4Ab chromosome-specific fragments by comparing the sequences generated by specific-length amplified fragment sequencing, with an efficiency of up to 55.0%. Furthermore, the specificity of these markers was verified in four species containing the Ab genome. These markers not only can be used for the detection of the 4Ab chromosome but also provide a basis for molecular marker-assisted, selection-based breeding in wheat.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Resistencia a la Enfermedad/genética , Fitomejoramiento , Basidiomycota/genética , Marcadores Genéticos
14.
Plant Dis ; 107(3): 879-885, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36044366

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases in wheat production. Pyramiding of adult-plant resistance (APR) genes is a promising strategy to increase durability of resistance. The stripe rust resistance (R) genes Yr18, Yr28, and Yr36 encode different protein families which confer partial resistance to a broad array of P. striiformis f. sp. tritici races. Here, we developed BC3F5 wheat lines representing all possible combinations of Yr18, Yr28, and Yr36 in a genetic background of the highly P. striiformis f. sp. tritici-susceptible wheat line SY95-71 that is widely used in stripe rust analysis. These lines enabled us to accurately evaluate these genes singly and in combination in a common genetic background. The adult plant resistance experiments were analyzed in the field, where stripe rust epidemics occurred frequently. The field results indicated that these partial R genes act additively in enhancing the levels of resistance, and a minimum of two-gene combinations can generate adequate stripe rust resistance. The Yr28 + Yr36 and Yr18 + Yr28 + Yr36 combinations also showed adequate resistance at the seedling stage, implying that APR gene pyramiding can achieve all-stage resistance. Meanwhile, the three genes were simultaneously introduced into elite wheat lines through gene-based marker selection. Elite lines exhibited strong all-stage resistance to stripe rust. This work provides valuable insights and resources for developing durable P. striiformis f. sp. tritici-resistant varieties and for elucidating the regulation mechanism of partial R gene pyramiding.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Basidiomycota/fisiología , Genes de Plantas , Marcadores Genéticos
15.
Inorg Chem ; 61(20): 7746-7753, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35544682

RESUMEN

Capturing volatile radionuclide iodine produced in the nuclear industry is a crucial environmental issue. In previous studies, the principal efficient adsorbent for iodine capture was silver-containing zeolite. As silver-containing zeolites are expensive, alternate copper-loaded porous zeolites, including CuCl loaded NaY reduced by H2 (denoted as H2CuY) and CO (denoted as COCuY), were studied for iodine adsorption at moderate temperatures. The current work also discusses the influence of copper valency on iodine adsorption. Due to the copper sites and nanosized pore structure, H2CuY and COCuY showed high iodine adsorption capacities of 450 and 219 mg/g, respectively. The iodine adsorption capacity of H2CuY was higher than that of silver-loaded zeolites. Moreover, H2CuY and COCuY adsorbed volatile iodine through a chemical mechanism involving the copper sites of different valencies, and the Cu0 was more effective in adsorbing iodine than Cu+. These copper-loaded zeolites with strong chemical interactions with iodine and high iodine adsorption capacities provided the possibility for iodine adsorption application in the nuclear industry.

16.
Plant Biotechnol J ; 20(7): 1311-1326, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35315196

RESUMEN

Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield.


Asunto(s)
Grano Comestible , Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas , Triticum/metabolismo
17.
Sci Rep ; 12(1): 4898, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318389

RESUMEN

Stem solidness is an important agronomic trait for increasing the ability of wheat to resist lodging. In this study, four new synthetic hexaploid wheat with solid stems were developed from natural chromosome doubling of F1 hybrids between a solid-stemmed durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, AABB) and four Aegilops tauschii (2n = 2x = 14, DD) accessions. The solid expression of the second internode at the base of the stem was stable for two synthetic hexalpoid wheat Syn-SAU-117 and Syn-SAU-119 grown in both the greenhouse and field. The lodging resistance of four synthetic solid-stem wheats is stronger than that of CS, and Syn-SAU-116 has the strongest lodging resistance, followed by Syn-SAU-119. The paraffin sections of the second internode showed that four synthetic wheat lines had large outer diameters, well-developed mechanical tissues, large number of vascular bundles, and similar anatomical characteristics with solid-stemmed durum wheat. The chromosomal composition of four synthetic hexaploid wheat was identified by FISH (fluorescence in situ hybridization) using Oligo-pSc119.2-1 and Oligo-pTa535-1. At adult stage, all four synthetic hexaploid wheat showed high resistance to mixed physiological races of stripe rust pathogen (CYR31, CYR32, CYR33, CYR34). These synthetic hexaploid wheat lines provide new materials for the improvement of common wheat.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Hibridación Fluorescente in Situ , Triticum/genética
18.
Arch Microbiol ; 204(1): 91, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34962581

RESUMEN

Staphylococcus xylosus is a gram-positive bacterium that has attracted much attention due to its increasing clinical appearance, frequently associated with serious multidrug resistance cases. L-lactate dehydrogenase (LDH) has been related to drug resistance in several bacterial species. However, the mechanism of multidrug resistance in S. xylosus remains unclear as well as the involvement of LDH in such resistance. To explore the relationship between multidrug resistance and LDH in S. xylosus, we used tylosin-resistant S. xylosus as the parent strain to construct ldh knockout and complemented strains. Then, we tested their resistance to macrolides, lincosamides, tetracyclines, and aminoglycosides. In addition, the enzyme activity, metabolite content, and transcriptional level of key genes involved in the TCA cycle and thioredoxin system were determined to clarify the mechanism of resistance. We observed that the resistance to multiple antibiotics increased significantly after ldh knockout, especially that to lincomycin, whereas antibiotic sensitivity was partially restored in the complemented strain. The levels of pyruvate, nicotinamide adenine dinucleotide, and reactive oxygen species decreased significantly upon ldh knockout, and the activity of isocitrate dehydrogenase and malate dehydrogenase decreased. These results indicate that the lack of LDH promotes multidrug resistance in S. xylosus by inhibiting the TCA cycle and regulating the thioredoxin system.


Asunto(s)
L-Lactato Deshidrogenasa , Staphylococcus , Antibacterianos/farmacología , Resistencia a Múltiples Medicamentos , L-Lactato Deshidrogenasa/genética , Staphylococcus/genética
19.
Front Plant Sci ; 12: 762265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804098

RESUMEN

Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.

20.
Theor Appl Genet ; 134(9): 2891-2900, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089337

RESUMEN

KEY MESSAGE: A novel recessive gene YrZ15-1370 derived from Triticum boeoticum confers adult-plant resistance to wheat stripe rust. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult-plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, tentatively designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here could be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/inmunología , Genes Recesivos , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Triticum/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , RNA-Seq , Estaciones del Año , Triticum/crecimiento & desarrollo , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...