Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(9): 306, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134770

RESUMEN

CONTEXT: The challenge of activating inert allyl monomers for polymerization has persisted, prompting our proposal of the photo-driven radical mediated [3 + 2] cyclization reaction (PRMC). This innovative approach significantly expedites the homopolymerization of multi-allyl monomers, enabling the synthesis of embolic microspheres for hepatocellular carcinoma interventions. PRMC involves allyl monomers to form allylic radicals and then radicals participating in a cycloaddition reaction with unsaturated olefins as radicalophiles to form cyclopentane-based radical products. While extensively studied in the theoretical and experimental homopolymerization, PRMC's application in copolymerization remains unexplored. To address this knowledge gap, we explored the elementary reaction, selecting allyl methyl ether radicals (AMER) and α,ß-unsaturated ketones as radicalophiles for copolymerization investigations by density functional theory (DFT) analysis. We quantified energy differences between ground and excited states of reactants, elucidated frontier molecular orbitals, and assessed thermodynamic data for copolymerization feasibility. We also evaluated the electronic properties of reactants, predicting the reactivity of radicalophiles and the interactions of intermolecular reactions. Additionally, we applied transition state theory and interaction/deformation models and conducted a local orbital analysis to comprehensively study excess electron distribution and gyration radius of cyclic radical product. Our findings offer vital insights into PRMC's potential in copolymerization. This research provides a robust theoretical foundation for practical application, enhancing the polymerization field. METHODS: Based on density functional theory (DFT), the calculations were performed at the M06-2X/6-311 + + G(d,p) level in/by Gaussian 16 package. Subsequently, our analytical results apply time-dependent density-functional theory (TD-DFT) and solvent modeling (SMD). Single-point energy calculations determine the driving force behind the radicals' reaction with radicalophiles. Furthermore, we assessed the electrostatic potential (ESP) of the reactants. The results of the calculations were visualized by the Multiwfn 3.6 and VMD 1.9 programs.

2.
Acta Pharm Sin B ; 13(7): 3153-3167, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37521875

RESUMEN

Metastasis and resistance are main causes to affect the outcome of the current anticancer therapies. Heat shock protein 90 (Hsp90) as an ATP-dependent molecular chaperone takes important role in the tumor metastasis and resistance. Targeting Hsp90 and downregulating its expression show promising in inhibiting tumor metastasis and resistance. In this study, a redox-responsive dual-drug nanocarrier was constructed for the effective delivery of a commonly used chemotherapeutic drug PTX, and a COA-modified 4-arm PEG polymer (4PSC) was synthesized. COA, an active component in oleanolic acid that exerts strong antitumor activity by downregulating Hsp90 expression, was used as a structural and functional element to endow 4PSC with redox responsiveness and Hsp90 inhibitory activity. Our results showed that 4PSC/PTX nanomicelles efficiently delivered PTX and COA to tumor locations without inducing systemic toxicity. By blocking the Hsp90 signaling pathway, 4PSC significantly enhanced the antitumor effect of PTX, inhibiting tumor proliferation and invasiveness as well as chemotherapy-induced resistance in vitro. Remarkable results were further confirmed in vivo with two preclinical tumor models. These findings demonstrate that the COA-modified 4PSC drug delivery nanosystem provides a potential platform for enhancing the efficacy of chemotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...