Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 44(18): 4436-4438, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517902

RESUMEN

Polarization measurement is crucial for many optical applications in science and technology. Geometric metasurfaces have been used to develop polarization-sensitive holograms, providing a new opportunity for polarization measurement. We propose and experimentally demonstrate a hologram method to measure the polarization state of light. A reflective-type metasurface hologram is used to generate holographic images of graphene pattern. The ellipticity and helicity of the incident light are measured based on the intensities of the neighboring light spots, corresponding to two opposite circular polarization states. Benefiting from the advantages of reflective geometric metasurfaces, this device can operate in broadband.

2.
ACS Nano ; 13(2): 1213-1222, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30629429

RESUMEN

Integrated nonlinear metasurfaces leading to high-efficiency optical second harmonic generation (SHG) are highly desirable for optical sensing, imaging, and quantum photonic systems. Compared to traditional metal-only metasurfaces, their hybrid counterparts, where a noncentrosymmetric nonlinear photonic material is incorporated in the near-field of a metasurface, can significantly boost SHG efficiency. However, it is difficult to integrate such devices on-chip due to material incompatibilities, thickness scaling challenges, and the narrow band gaps of nonlinear optical materials. Here, we demonstrate significantly enhanced SHG in on-chip integrated metasurfaces by using nanometer thin films of ferroelectric Y:HfO2. This material has the merit of CMOS compatibility, ultraviolet transparency up to 250 nm, and significant scalability down to sub-10 nm when deposited on silicon. We observe a 20-fold magnitude enhancement of the SHG intensity from the hybrid metasurface compared to a bare ferroelectric HfO2 thin film. Moreover, a 3-fold SHG enhancement is observed from the hybrid metasurface compared to a control structure using nonferroelectric HfO2, demonstrating a major contribution to the SHG signal from ferroelectric Y:HfO2. The effective second-order nonlinear optical coefficient χ(2) of Y:HfO2 is determined to be 6.0 ± 0.5 pm/V, which is comparable to other complex nonlinear photonic oxide materials. Our work provides a general pathway to build an efficient on-chip nanophotonic nonlinear light source for SHG using ferroelectric HfO2 thin films.

3.
Adv Mater ; 30(21): e1707499, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603423

RESUMEN

Optical metasurfaces have shown unprecedented capabilities in the local manipulation of the light's phase, intensity, and polarization profiles, and represent a new viable technology for applications such as high-density optical storage, holography and display. Here, a novel metasurface platform is demonstrated for simultaneously encoding color and intensity information into the wavelength-dependent polarization profile of a light beam. Unlike typical metasurface devices in which images are encoded by phase or amplitude modulation, the color image here is multiplexed into several sets of polarization profiles, each corresponding to a distinct color, which further allows polarization modulation-induced additive color mixing. This unique approach features the combination of wavelength selectivity and arbitrary polarization control down to a single subwavelength pixel level. The encoding approach for polarization and color may open a new avenue for novel, effective color display elements with fine control over both brightness and contrast, and may have significant impact for high-density data storage, information security, and anticounterfeiting.

4.
Light Sci Appl ; 7: 17129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839643

RESUMEN

Images perceived by human eyes or recorded by cameras are usually optical patterns with spatially varying intensity or color profiles. In addition to the intensity and color, the information of an image can be encoded in a spatially varying distribution of phase or polarization state. Interestingly, such images might not be able to be directly viewed by human eyes or cameras because they may exhibit highly uniform intensity profiles. Here, we propose and experimentally demonstrate an approach to hide a high-resolution grayscale image in a square laser beam with a size of less than half a millimeter. An image with a pixel size of 300 × 300 nm is encoded into the spatially variant polarization states of the laser beam, which can be revealed after passing through a linear polarizer. This unique technology for hiding grayscale images and polarization manipulation provides new opportunities for various applications, including encryption, imaging, optical communications, quantum science and fundamental physics.

5.
Sci Rep ; 7(1): 11440, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900301

RESUMEN

An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

6.
Adv Mater ; 29(15)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28207164

RESUMEN

A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas.

7.
Sci Rep ; 6: 27628, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27272601

RESUMEN

A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping.

8.
Nat Commun ; 6: 8241, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26354497

RESUMEN

Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

9.
Opt Express ; 23(8): 10272-81, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969069

RESUMEN

The miniaturization of measurement systems currently used to characterize the polarization state of light is limited by the bulky optical components used such as polarizers and waveplates. We propose and experimentally demonstrate a simple and compact approach to measure the ellipticity and handedness of the polarized light using an ultrathin (40 nm) gradient metasurface. A completely polarized light beam is decomposed into a left circularly polarized beam and a right circularly polarized beam, which are steered in two directions by the metasurface consisting of nanorods with spatially varying orientations. By measuring the intensities of the refracted light spots, the ellipticity and handedness of various incident polarization states are characterized at a range of wavelengths and used to determine the polarization information of the incident beam. To fully characterize the polarization state of light, an extra polarizer can be used to measure the polarization azimuth angle of the incident light.

10.
Opt Express ; 22(1): 254-61, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24514986

RESUMEN

We demonstrated a Q-switched Ho:YAG ceramic laser operating at 2097 nm. The Ho:YAG ceramic laser was resonantly pumped by a Tm:YLF laser at 1908 nm. The laser performance with two Ho-doping concentrations of Ho:YAG ceramics in a U-shaped resonator was studied. Different pump spots were investigated to obtain high extract efficiency. The wavelength of Ho:YAG ceramic laser was tuned from 2090.70 nm to 2098.10 nm. The Q-switched pulse energy were 9.6 mJ at a pulse repetition frequency (PRF) of 200 Hz and 10.2 mJ at a PRF of 100 Hz, respectively. The beam quality M(2) factors were measured to be less than 1.1 in both directions.

11.
Appl Opt ; 52(6): 1272-5, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23434999

RESUMEN

We report a laser-diode-pumped 2 µm single-frequency Tm:LuAG laser at room temperature. Two fused-silica etalons were used as mode selectors for the single-frequency operation. The maximum single-frequency output power was 616 mW at wavelength of 2021 nm, with a relative power stability of 0.61%. The wavelength tuning range of the single-frequency Tm:LuAG laser was 11 nm from 2018.714 to 2029.876 nm. The M(2) factors were measured to be 1.38 and 1.36 in the x and y directions, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...