Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169104, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38070565

RESUMEN

Prolonged exposure to environmentally relevant amounts of cadmium (Cd) in aquatic environments, even at small doses (0.1 and 1 µg/L), might endanger the health of underwater creatures. This research delved into the impacts of a four-month cadmium exposure on Mozambique tilapia (Oreochromis mossambicus), aiming to uncover the mechanisms behind it. Through close examination, we found that the 4-momth cadmium exposure led to harmful effects on the fish's gills, muscles, brain, and intestines. This exposure also triggered changes in gene expressions in the brain and liver, affected the respiratory system and weakened liver's ability to detoxify and defend against potential infections. Looking deeper into the fish's gut, we noticed alterations in energy-related genes and disruptions in immune pathways, making it more susceptible to illnesses. The exposure to cadmium also had an impact on the fish's gut and water-dwelling microorganisms, reducing diversity and encouraging harmful microbial communities. Interestingly, some gut microbes seemed to assist in breaking down and detoxifying cadmium, which could potentially protect the fish. Taken together, prolonged low-level cadmium exposure impaired gill, muscle, and brain function, suppressed immunity, disrupted intestines, and altered microbial balance, leading to hindered growth. These insights illuminate cadmium's impact on fish, addressing vital environmental concerns.


Asunto(s)
Tilapia , Contaminantes Químicos del Agua , Animales , Tilapia/metabolismo , Cadmio/metabolismo , Músculos , Branquias/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569636

RESUMEN

Salvia hispanica (chia) is a highly nutritious food source and has gained popularity due to its high omega-3 fatty acid content. Red spider mites are a serious problem in the production of S. hispanica. However, no study has been conducted to analyze the defensive response to the infestation of red spider mites in S. hispanica. To elucidate the molecular mechanisms of the defensive response of S. hispanica to red spider mites, we performed a transcriptomic analysis of S. hispanica when infested by red spider mites. In the comparative assessment of leaf transcriptomes, a total of 1743 differentially expressed genes (DEGs) were identified between control and mite-infested S. hispanica. From these, 1208 (69%) transcripts were upregulated and 535 (31%) were downregulated. The DEGs included transcription factors, defense hormones, and secondary metabolites that were either suppressed or activated in response to spider mite herbivory. Gene Ontology (GO) enrichment analysis revealed that plant secondary metabolites, such as glucosinolates, and signaling pathways, including the jasmonic acid signaling pathway, may play an important role in the defense against red spider mites. This study provides novel insights into the defense response of S. hispanica to insect herbivory and could be a resource for the improvement of pest resistance in the chia.


Asunto(s)
Tetranychidae , Transcriptoma , Animales , Tetranychidae/genética , Salvia hispanica , Perfilación de la Expresión Génica , Transducción de Señal
3.
Front Plant Sci ; 14: 1100838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818875

RESUMEN

Drought stress is a major environmental hazard. Stomatal development is highly responsive to abiotic stress and has been used as a cellular marker for drought-tolerant crop selection. C3 and C4 crops have evolved into different photosynthetic systems and physiological responses to water deficits. The genome sequences of maize, sorghum, and sugarcane make it possible to explore the association of the stomatal response to drought stress with the evolution of the key stomatal regulators. In this study, phylogenic analysis, gene expression analysis and stomatal assay under drought stress were used to investigate the drought tolerance of C3 and C4 plants. Our data shows that C3 and C4 plants exhibit different drought responses at the cellular level. Drought represses the growth and stomatal development of C3 crops but has little effect on that of C4 plants. In addition, stomatal development is unresponsive to drought in drought-tolerant C3 crops but is repressed in drought-tolerant C4 plants. The different developmental responses to drought in C3 and C4 plants might be associated with the divergent expression of their SPEECHLESS genes. In particular, C4 crops have evolved to generate multiple SPEECHLESS homologs with different genetic structure and expression levels. Our research provides not only molecular evidence that supports the evolutionary history of C4 from C3 plants but also a possible molecular model that controls the cellular response to abiotic stress in C3 and C4 crops.

4.
Mar Biotechnol (NY) ; 24(6): 1084-1093, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227511

RESUMEN

The nervous necrosis virus (NNV) causes the viral nervous necrosis (VNN) disease in aquatic animals and has been a major threat in aquaculture. Thus, it is essential for the development of a prevention method to minimize economic losses caused by NNV such as the identification of NNV resistance genes and application of these genes in molecular breeding to increase disease resistance. gab3 is an important NNV resistance gene in Asian seabass. However, the mechanism of gab3 in NNV resistance has not been elucidated. In this study, knockdown of gab3 in NNV-infected Asian seabass cells resulted in a significant decrease in viral RNA and virus titers. Knockout of gab3 in zebrafish led to an increased survival rate and resistant time after NNV infection. Cellular localization of the GAB3 and NNV by immunofluorescence staining showed that the GAB3 was translocated from the nucleus to the cytoplasm, and finally reached the cell membrane of SB cells after 48 h post NNV infection. Our study suggests that gab3 plays an important role in NNV replication and silencing gab3 can inhibit virus replication.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Perciformes , Infecciones por Virus ARN , Animales , Infecciones por Virus ARN/genética , Pez Cebra , Nodaviridae/fisiología , Replicación Viral , Necrosis , Lubina/genética
5.
Plant Commun ; 3(4): 100326, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35605203

RESUMEN

Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.


Asunto(s)
Ácidos Grasos Omega-3 , Salvia , Cromosomas , Ácidos Grasos Omega-3/genética , Humanos , Salvia/genética , Semillas/genética
6.
Mar Biotechnol (NY) ; 24(3): 566-573, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416601

RESUMEN

Understanding of the relationships between genotypes and phenotypes is a central problem in biology. Although teleosts have colorful phenotypes, not much is known about their underlying mechanisms. Our previous study showed that golden skin color in Mozambique tilapia was mapped in the major locus containing the Pmel gene, and an insertion in 3' UTR of Pmel17 was fully correlated with the golden color. However, the molecular mechanism of how Pmel17 determines the golden skin color is unknown. In this study, knockout of Pmel17 with CRISPR/Cas9 in blackish tilapias resulted in golden coloration, and rescue of Pmel17 in golden tilapias recovered the wild-type blackish color, indicating that Pmel17 is the gene determining the golden and blackish color. Functional analysis in vitro showed that the insertion in the 3' UTR of Pmel17 reduced the transcripts of Pmel17. Our data supplies more evidence to support that Pmel17 is the gene for blackish and golden colors, and highlights that the insertion in the 3' UTR of Pmel17 is the causative mutation for the golden coloration.


Asunto(s)
Pigmentación de la Piel , Tilapia , Regiones no Traducidas 3' , Animales , Mutación , Fenotipo , Pigmentación de la Piel/genética , Tilapia/genética
7.
BMC Biol ; 20(1): 5, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996452

RESUMEN

BACKGROUND: Fishes are the one of the most diverse groups of animals with respect to their modes of sex determination, providing unique models for uncovering the evolutionary and molecular mechanisms underlying sex determination and reversal. Here, we have investigated how sex is determined in a species of both commercial and ecological importance, the Siamese fighting fish Betta splendens. RESULTS: We conducted association mapping on four commercial and two wild populations of B. splendens. In three of the four commercial populations, the master sex determining (MSD) locus was found to be located in a region of ~ 80 kb on LG2 which harbours five protein coding genes, including dmrt1, a gene involved in male sex determination in different animal taxa. In these fish, dmrt1 shows a male-biased gonadal expression from undifferentiated stages to adult organs and the knockout of this gene resulted in ovarian development in XY genotypes. Genome sequencing of XX and YY genotypes identified a transposon, drbx1, inserted into the fourth intron of the X-linked dmrt1 allele. Methylation assays revealed that epigenetic changes induced by drbx1 spread out to the promoter region of dmrt1. In addition, drbx1 being inserted between two closely linked cis-regulatory elements reduced their enhancer activities. Thus, epigenetic changes, induced by drbx1, contribute to the reduced expression of the X-linked dmrt1 allele, leading to female development. This represents a previously undescribed solution in animals relying on dmrt1 function for sex determination. Differentiation between the X and Y chromosomes is limited to a small region of ~ 200 kb surrounding the MSD gene. Recombination suppression spread slightly out of the SD locus. However, this mechanism was not found in the fourth commercial stock we studied, or in the two wild populations analysed, suggesting that it originated recently during domestication. CONCLUSIONS: Taken together, our data provide novel insights into the role of epigenetic regulation of dmrt1 in sex determination and turnover of SD systems and suggest that fighting fish are a suitable model to study the initial stages of sex chromosome evolution.


Asunto(s)
Epigénesis Genética , Procesos de Determinación del Sexo , Animales , Femenino , Peces/genética , Masculino , Procesos de Determinación del Sexo/genética , Factores de Transcripción/metabolismo , Cromosoma X
9.
Mar Biotechnol (NY) ; 23(6): 854-869, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34735644

RESUMEN

Viral nervous necrosis (VNN) disease caused by the nervous necrosis virus (NNV) is a major disease, leading to a huge economic loss in aquaculture. Previous GWAS and QTL mapping have identified a major QTL for NNV resistance in linkage group 20 in Asian seabass. However, no causative gene for NNV resistance has been identified. In this study, RNA-seq from brains of Asian seabass fingerlings challenged with NNV at four time points (5, 10, 15 and 20 days post-challenge) identified 1228, 245, 189 and 134 DEGs, respectively. Eight DEGs, including rrm1, were located in the major QTL for NNV resistance. An association study in 445 survived and 608 dead fingerlings after NNV challenge revealed that the SNP in rrm1 were significantly associated with NNV resistance. Therefore, rrm1 was selected for functional analysis, as a candidate gene for NNV resistance. The expression of rrm1 was significantly increased in the gill, liver, spleen and muscle, and was suppressed in the brain, gut and skin after NNV challenge. The rrm1 protein was localized in the nuclear membrane. Over-expression of rrm1 significantly decreased viral RNA and titer in NNV-infected Asian seabass cells, whereas knock-down of rrm1 significantly increased viral RNA and titer in NNV-infected Asian seabass cells. The rrm1 knockout heterozygous zebrafish was more susceptible to NNV infection. Our study suggests that rrm1 is one of the causative genes for NNV resistance and the SNP in the gene may be applied for accelerating genetic improvement for NNV resistance.


Asunto(s)
Lubina , Resistencia a la Enfermedad/genética , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/genética , Lubina/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Edición Génica , Nodaviridae/patogenicidad , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/veterinaria , RNA-Seq , Pez Cebra/genética
10.
Mar Biotechnol (NY) ; 23(3): 445-455, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33993358

RESUMEN

Ocean acidification is changing the fate of marine organisms. It is essential to predict the biological responses and evolutionary processes driven by ocean acidification, to maintain the equilibrium of the marine ecosystem and to facilitate aquaculture. However, how marine organisms, particularly the marine fish species, respond to ocean acidification, is still poorly understood. Consequences of ocean acidification on finfish aquaculture are largely not well known. We studied the effects of ocean acidification for 7 days on growth, behaviour and gene expression profiles in the brain, gill and kidney of Asian seabass juveniles. Results showed that growth and behaviour were not affected by short-term ocean acidification. We found tissue-specific differentially expressed genes (DEGs) involving many molecular processes, such as organ development, growth, muscle development, ion homeostasis and neurogenesis and development, as well as behaviours. Most of the DEGs, which were functionally enriched in ion homeostasis, were related to calcium transport, followed by sodium/potassium channels. We found that genes associated with neurogenesis and development were significantly enriched, implying that ocean acidification has also adversely affected the neural regulatory mechanism. Our results indicate that although the short-term ocean acidification does not cause obvious phenotypic and behavioural changes, it causes substantial changes of gene expressions in all three analysed tissues. All these changes of gene expressions may eventually affect physiological fitness. The DEGs identified here should be further investigated to discover DNA markers associated with adaptability to ocean acidification to improve fish's capability to adapt to ocean acidification.


Asunto(s)
Perciformes/crecimiento & desarrollo , Agua de Mar/química , Transcriptoma , Animales , Acuicultura , Conducta Animal , Encéfalo/metabolismo , Dióxido de Carbono , Branquias/metabolismo , Concentración de Iones de Hidrógeno , Riñón/metabolismo , Perciformes/genética , Perciformes/metabolismo
11.
Mol Biol Evol ; 38(8): 3383-3396, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871625

RESUMEN

Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole-genome sequencing, quantitative trait loci mapping, genome-wide association studies, and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino, and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double-tail mutant was suggested to be caused by a deletion in a zic1/zic4 coenhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.


Asunto(s)
Aletas de Animales/anatomía & histología , Domesticación , Perciformes/genética , Fenotipo , Pigmentación/genética , Animales , Femenino , Variación Genética , Genoma , Masculino , Perciformes/anatomía & histología
12.
Mol Breed ; 41(3): 22, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309424

RESUMEN

The oil palm, originating from Africa, is the most productive oil crop species. Palm oil is an important source of edible oil. Its current global plantation area is over 23 million ha. The theoretical oil yield potential of the oil palm is 18.2 tons/ha/year. However, current average oil yield is only 3.8 tons/ha/year. In the past 100 years, conventional breeding and improvement of field management played important roles in increasing oil yield. However, conventional breeding for trait improvement was limited by its very long (10-20 years) phenotypic selection cycle, although it improved oil yield by ~10-20% per generation. Molecular breeding using novel molecular technologies will accelerate genetic improvement and may reduce the need to deforest and to use arable land for expanding oil palm plantations, which in turn makes palm oil more sustainable. Here, we comprehensively synthesize information from relevant literature of the technologies, achievements, and challenges of molecular approaches, including tissue culture, haploid breeding, mutation breeding, marker-assisted selection (MAS), genomic selection (GS), and genome editing (GE). We propose the characteristics of ideal palms and suggest a road map to breed ideal palms for sustainable palm oil.

13.
Sci Rep ; 10(1): 21303, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277563

RESUMEN

Oil palm is the most productive oilseed crop and its oil yield is seriously affected by frequent drought stress. However, little is known about the molecular responses of oil palm to drought stress. We studied the root transcriptomic responses of oil palm seedlings under 14-day drought stress. We identified 1293 differentially expressed genes (DEGs), involved in several molecular processes, including cell wall biogenesis and functions, phenylpropanoid biosynthesis and metabolisms, ion transport and homeostasis and cellular ketone metabolic process, as well as small molecule biosynthetic process. DEGs were significantly enriched into two categories: hormone regulation and metabolism, as well as ABC transporters. In addition, three protein-protein interaction networks: ion transport, reactive nitrogen species metabolic process and nitrate assimilation, were identified to be involved in drought stress responses. Finally, 96 differentially expressed transcription factors were detected to be associated with drought stress responses, which were classified into 28 families. These results provide not only novel insights into drought stress responses, but also valuable genomic resources to improve drought tolerance of oil palm by both genetic modification and selective breeding.


Asunto(s)
Arecaceae/metabolismo , Osmorregulación , Raíces de Plantas/metabolismo , Transcriptoma , Transportadoras de Casetes de Unión a ATP/metabolismo , Arecaceae/genética , Pared Celular/metabolismo , Sequías , Reguladores del Crecimiento de las Plantas/metabolismo , Mapas de Interacción de Proteínas , Plantones/metabolismo , Factores de Transcripción/metabolismo
15.
Fish Shellfish Immunol ; 104: 18-24, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32473363

RESUMEN

Understanding the functions of genes related to disease resistance and identifying polymorphisms in these genes are essential in molecular breeding for disease resistance. Viral nervous necrosis (VNN) is one of the major diseases in the Asian seabass, Lates calcarifer. Our previous works on QTL mapping, GWAS and cell-line transcriptome analysis of the Asian seabass after NNV challenge revealed that the gene GAB3 might be a candidate gene for VNN resistance. In this study, we cloned and characterized GAB3, and identified SNPs in the gene of the Asian seabass. The cDNA of the gene was 2165 bp, containing an ORF of 1674 bp encoding 557 amino acids. The gene consisted of 10 exons and nine introns. It was ubiquitously expressed in normal fish. An analysis of the association between two SNPs in the second intron and NNV resistance in 1035 fish descended from 43 families revealed that the two SNPs were significantly associated with VNN resistance. After NNV infection, the expression of GAB3 was significantly increased in the brain, spleen, muscle and gut, and was suppressed in the liver. The GAB3 protein was localized in the nucleus. Overexpression of GAB3 with specific GAB3-pcDNA was positively correlated to increased viral RNA and titer in NNV-infected Asian seabass cells. Our study provides new evidence to support that GAB3 may be an important gene related to NNV resistance. In addition, the SNPs provide DNA markers for the selection of candidate genes resistance to NNV at the juvenile stage of Asian seabass.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteína Adaptadora GRB2/química , Perfilación de la Expresión Génica/veterinaria , Nodaviridae/inmunología , Filogenia , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria
16.
Gene ; 731: 144341, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31935502

RESUMEN

Hypoxia is one of the major challenges in aquaculture industry. Breeding of fish tolerant to hypoxia is an important task in genetic improvement of aquaculture species. The Asian seabass, Lates calcarifer, is an important foodfish species. We identified and characterized the hypoxia-inducible factor inhibitor (HIF1αn) gene in the Asian seabass. The full-length cDNA sequence of the HIF1αn was 3425 bp, with an ORF of 1065 bp, encoding 354 amino acids. The genomic sequence of the gene was 8667 bp in length, and contained eight exons and seven introns. Phylogenetic analysis of the gene in fish and tetrapods revealed that the HIF1αn in the Asian seabass was closely related to that of tilapia (Oreochromis niloticus). The HIF1αn was highly up-regulated in the gill, spleen and heart after 3.5-hours hypoxia treatment. We identified three SNPs in the third and fourth introns of the HIF1αn gene. The SNP (i.e. SNP 9332241 (C/T)) in the fourth intron was significantly (P < 0.01) associated with hypoxia tolerance. This SNP might be useful in selecting Asian seabass for improved tolerance to hypoxia. Our data also provide useful information for further detailed analysis of the function of the HIF1αn gene in hypoxia tolerance.


Asunto(s)
Adaptación Biológica/genética , Lubina/genética , Hipoxia/genética , Oxigenasas de Función Mixta/genética , Animales , Lubina/clasificación , Lubina/metabolismo , Clonación Molecular , Femenino , Estudios de Asociación Genética/veterinaria , Masculino , Oxigenasas de Función Mixta/metabolismo , Perciformes/clasificación , Perciformes/genética , Filogenia , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Homología de Secuencia , Proteínas de Pez Cebra/genética
17.
Mar Biotechnol (NY) ; 21(5): 643-654, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31273567

RESUMEN

Asian seabass is an important food fish species. While improving growth, increasing the nutritional value is important, omega-3 fatty acids are indispensable to human health. Identifying and validating DNA markers associated with traits is the first step towards marker-assisted selection (MAS). We quantified 13 different fatty acids and three growth traits in 213 F2 Asian seabass from a family at the age 270 days post hatch, and screened QTL for these traits. The content of total fatty acids in 100 g flesh was 2.57 ± 0.80 g, while the proportions of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 16.96 ± 2.20% and 5.42 ± 0.90%, respectively. A linkage map with 2424 SNPs was constructed and used for QTL mapping. For fatty acid compositions, 14 significant QTL were identified on three linkage groups (LG5, LG11 and LG14), with phenotypic variance explained (PVE) from 12.8 to 24.6%. Thirty-nine suggestive QTL were detected on 16 LGs. Two significant QTL for EPA were identified on LG5 and LG14, with PVE of 15.2% and 15.1%, respectively. No significant QTL was identified for DHA. For growth traits, six significant and 13 suggestive QTL were identified on two and seven LGs, respectively. Only a few significant QTL for fatty acids overlapped with previously mapped QTL for these traits, suggesting that most QTL detected in a family are family-specific and could only be used in MAS in the family per se. To facilitate population-wide molecular breeding, more powerful methods (e.g. GWAS) should be used to identify SNPs for genomic selection.


Asunto(s)
Lubina/genética , Ácidos Docosahexaenoicos/genética , Ácido Eicosapentaenoico/genética , Genoma , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Mapeo Cromosómico/métodos , Ácidos Docosahexaenoicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Ácidos Grasos/biosíntesis , Ácidos Grasos/clasificación , Ácidos Grasos/genética , Ligamiento Genético , Genotipo , Músculos/metabolismo , Polimorfismo de Nucleótido Simple
18.
BMC Genomics ; 20(1): 467, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174480

RESUMEN

BACKGROUND: Genetic diversity within a species reflects population evolution, ecology, and ability to adapt. Genome-wide population surveys of both natural and introduced populations provide insights into genetic diversity, the evolutionary processes and the genetic basis underlying local adaptation. Grass carp is the most important freshwater foodfish species for food and water weed control. However, there is as yet no overall picture on genetic variations and population structure of this species, which is important for its aquaculture. RESULTS: We used 43,310 SNPs to infer the population structure, evidence of local adaptation and sources of introduction. The overall genetic differentiation of this species was low. The native populations were differentiated into three genetic clusters, corresponding to the Yangtze, Pearl and Heilongjiang River Systems, respectively. The populations in Malaysia, India and Nepal were introduced from both the Yangtze and Pearl River Systems. Loci and genes involved in putative local selection for native locations were identified. Evidence of both positive and balancing selection was found in the introduced locations. Genes associated with loci under putative selection were involved in many biological functions. Outlier loci were grouped into clusters as genomic islands within some specific genomic regions, which likely agrees with the divergence hitchhiking scenario of divergence-with-gene-flow. CONCLUSIONS: This study, for the first time, sheds novel insights on the population differentiation of the grass carp, genetics of its strong ability in adaption to diverse environments and sources of some introduced grass carp populations. Our data also suggests that the natural populations of the grass carp have been affected by the aquaculture besides neutral and adaptive forces.


Asunto(s)
Carpas/genética , Animales , Demografía , Evolución Molecular , Sitios Genéticos , Genoma , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Selección Genética
19.
Front Genet ; 10: 244, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949199

RESUMEN

Growth and omega-3/-6 ratio are important traits in aquaculture. The mechanisms underlying quick growth and high omega-3/-6 ratio in fish are not fully understood. The consumption of the meat of tilapia suffers a bad reputation due to its low omega-3/-6 ratio. To facilitate the improvement of these traits and to understand more about the mechanisms underlying quick growth and high omega-3/-6 ratio, we conducted transcriptome analysis in the muscle and liver of fast- and slow-growing hybrid saline tilapia generated by crossing Mozambique tilapia and red tilapia. A transcriptome with an average length of 963 bp was generated by using 486.65 million clean 100 bp paired-end reads. A total of 42,699 annotated unique sequences with an average length of 3.4 kb were obtained. Differentially expressed genes (DEGs) in the muscle and liver were identified between fast- and slow-growing tilapia. Pathway analysis classified these genes into many pathways. Ten genes, including foxK1, sparc, smad3, usp38, crot, fadps, sqlea, cyp7b1, impa1, and gss, from the DEGs were located within QTL for growth and omega-3, which were previously detected content in tilapia, suggesting that these ten genes could be important candidate genes for growth and omega-3 fatty acid content. Analysis of SNPs in introns 1 and 2 of foxK1 revealed that the SNPs were significantly associated with growth and omega-3/-6 ratio. This study lays the groundwork for further investigation of the molecular mechanisms underlying the phenotypic variation of these two traits and provides SNPs for selecting these traits at fingerling stage.

20.
Mar Biotechnol (NY) ; 21(3): 348-358, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30888532

RESUMEN

High-density genetic maps are essential for mapping QTL, improving genome assembly, comparative genomics, and studying sex chromosome evolution. The northern snakehead (Channa argus) is an economically important foodfish species with significant sexual dimorphism, where the males grow much faster and bigger than the females. However, to date, the sex determination pattern is still not clear, limiting identification of sex chromosomes, even sex determination genes and development of monosex populations that are valuable for both sex evolution of vertebrates and aquaculture practices. Here, a sex-averaged map and two sex-specific genetic maps were constructed with 2974, 2323, and 2338 SNPs, respectively. Little difference was observed in the pattern of sex-specific recombination between female- and male-specific genetic maps. Genome scan identified a major locus for sex determination at LG16. Females and males are, respectively, homogametic and heterogametic, suggesting an XY sex determination system for this species. By resequencing genomes, InDels in the sex-associated QTL region were discovered and used for developing sex-specific PCR assays for fast sexing of snakehead. These high-density genetic maps provide useful resources for future genomic studies in snakehead and its related species. The PCR assays for sexing are of importance in developing all male populations for aquaculture.


Asunto(s)
Acuicultura/métodos , Biomarcadores/análisis , Mapeo Cromosómico , Peces/genética , Genoma/genética , Análisis para Determinación del Sexo/veterinaria , Animales , Femenino , Ligamiento Genético , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...