Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118215, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641073

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys malacophylla (Pall.) Fisch (O. malacophylla) is a succulent herbaceous plant that is the Orostachys genus of Crassulaceae family. O. malacophylla has been widely used as a traditional Chinese medicine with antioxidant, anti-inflammatory, anti-febrile, antidote, anti-Toxoplasma gondii properties. However, the biological function of alleviating intestinal inflammation and key bioactive compounds were still unknown. AIM OF THE STUDY: We used a Drosophila model to study the protective effects and bioactive compounds of O. malacophylla water extract (OMWE) and butanol extract (OMBE) on intestinal inflammation. MATERIALS AND METHODS: Drosophila intestinal inflammation was induced by oral invasion of dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15). We revealed the protective effects of two extracts by determining intestinal reactive oxygen species (ROS) and antimicrobial peptide (AMP) levels and intestinal integrity, and using network pharmacology analysis to identify bioactive compounds. RESULTS: We demonstrated that both OMWE and OMBE could ameliorate the detrimental effects of DSS, including a decreased survival rate, elevated ROS levels, increased cell death, excessive proliferation of ISCs, acid-base imbalance, and disruption of intestinal integrity. Moreover, the overabundance of lipid droplets (LDs) and AMPs by Ecc15 infection is mitigated by these extracts, thereby enhancing the flies' resistance to adverse stimuli. In addition, we used widely targeted metabolomics and network pharmacology analysis to identify bioactive compounds associated with IBD healing that are present in OMWE and OMBE. CONCLUSIONS: In summary, our research indicates that OMWE and OMBE significantly mitigate intestinal inflammation and have the potential to be effective therapeutic agents for IBD in humans.


Asunto(s)
Sulfato de Dextran , Pectobacterium carotovorum , Extractos Vegetales , Especies Reactivas de Oxígeno , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Pectobacterium carotovorum/efectos de los fármacos , Crassulaceae/química , Intestinos/efectos de los fármacos , Intestinos/patología , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Drosophila melanogaster/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila , Farmacología en Red , Inflamación/tratamiento farmacológico , Péptidos Catiónicos Antimicrobianos/farmacología
2.
Phys Biol ; 20(4)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37105184

RESUMEN

The output of the bacterial chemotaxis signaling pathway, the level of the intracellular regulator CheY-P, modulates the rotation direction of the flagellar motor, thereby regulating bacterial run-and-tumble behavior. The multiple flagellar motors on anE. colicell are controlled by a common cytoplasmic pool of CheY-P. Fluctuation of the CheY-P level was thought to be able to coordinate the switching of multiple motors. Here, we measured the correlation of rotation directions between two motors on a cell, finding that it surprisingly exhibits two well separated timescales. We found that the slow timescale (∼6 s) can be explained by the slow fluctuation of the CheY-P level due to stochastic activity of the chemotactic adaptation enzymes, whereas the fast timescale (∼0.3 s) can be explained by the random pulse-like fluctuation of the CheY-P level, due probably to the activity of the chemoreceptor clusters. We extracted information on the properties of the fast CheY-P pulses based on the correlation measurements. The two well-separated timescales in the fluctuation of CheY-P level help to coordinate multiple motors on a cell and to enhance bacterial chemotactic performance.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/metabolismo , Quimiotaxis/fisiología
3.
mBio ; 13(4): e0078222, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35699374

RESUMEN

The flagellar motor drives the rotation of flagellar filaments, propelling the swimming of flagellated bacteria. The maximum torque the motor generates, the stall torque, is a key characteristic of the motor function. Direct measurements of the stall torque carried out 3 decades ago suffered from large experimental uncertainties, and subsequently there were only indirect measurements. Here, we applied magnetic tweezers to directly measure the stall torque in E. coli. We precisely calibrated the torsional stiffness of the magnetic tweezers and performed motor resurrection experiments at stall, accomplishing a precise determination of the stall torque per torque-generating unit (stator unit). From our measurements, each stator passes 2 protons per step, indicating a tight coupling between motor rotation and proton flux. IMPORTANCE The maximum torque the bacterial flagellar motor generates, the stall torque, is a critical parameter that describes the motor energetics. As the motor operates in equilibrium near stall, from the stall torque one can determine how many protons each torque-generating unit (stator) of the motor passes per revolution and then test whether motor rotation and proton flux are tightly or loosely coupled, which has been controversial in recent years. Direct measurements performed 3 decades ago suffered from large uncertainties, and subsequently, only indirect measurements were attempted, obtaining a range of values inconsistent with the previous direct measurements. Here, we developed a method that used magnetic tweezers to perform motor resurrection experiments at stall, resulting in a direct precise measurement of the stall torque per stator. Our study resolved the previous inconsistencies and provided direct experimental support for the tight coupling mechanism between motor rotation and proton flux.


Asunto(s)
Escherichia coli , Flagelos , Proteínas Motoras Moleculares , Proteínas Bacterianas , Escherichia coli/química , Escherichia coli/metabolismo , Flagelos/química , Flagelos/fisiología , Magnetismo/métodos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Protones , Torque
4.
Biochem Biophys Res Commun ; 591: 68-75, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999256

RESUMEN

The regulatory mechanism of hematopoiesis and innate immunity in Drosophila is highly similar to that in mammals, and Drosophila has become a suitable model to understand vertebrate hematopoiesis and the immune response. JAK-STAT signaling pathway components are widely conserved during evolution, and contribute to hematopoiesis and multiple tissue damage and immune responses. Here, we demonstrate that Stat92E is widely expressed in the lymph gland, and the loss of jumu inhibits the maintenance of the JAK/STAT pathway in the CZ and MZ but not in the PSC of the lymph gland. Furthermore, we found that clean puncture wounding of the larval epidermis can lead to the activation of JAK/STAT signaling and the generation of lamellocytes, and Jumu is required for the activation of JAK/STAT in response to epidermal wounds.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epidermis/patología , Quinasas Janus/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Factores de Transcripción/metabolismo , Heridas y Lesiones/metabolismo , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Hemocitos/metabolismo , Mutación/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA